K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2016

Ta chỉ cần tách các tổng thành tích thôi em nhé :)

a. \(8.2^n+2^{n+1}=8.2^n+2.2^n=10.2^n\) có tận cùng là chữ số 0.

b. \(A=27.3^n-2.3^n+32.2^n-7.2^n=25.3^n+25.2^n=25\left(3^n+2^n\right)\) nên A chia hết 25.

31 tháng 5 2015

a = 2\(^{n+1}\)(4+1) =10.2\(^n\) tận cùng =0

b= 3\(^n\)(27 -2) + 2\(^n\)(32-7)

= 25 (3\(^n\)+2\(^n\)) chia hết cho 25

 

 

 

 

 

 

a.8.2n+2n+1=2n(8+2)=2n.10 có tận cùng là 0

=>đpcm

b.3n+3-2.3n+2n+5-7.2n=3n(27-2)+2n(32-7)

=25.3n+25.2n=25(3n+2n) chia hết cho 25

=>đpcm

4 tháng 8 2015

nhìn thấy thì chóng mặt

chỉ cần làm 1 trong 8 câu là đủ rồi

Bài 3: 

a: Đặt Q(x)=0

=>x4+2=0

=>x4=-2(loại)

b: Đặt P(y)=0

=>y2+y+1=0

\(\text{Δ}=1^2-4=-3< 0\)

Do đó: PTVN

10 tháng 3 2017

ta có:

\(3^{n+3}-2.3^n+2^{n+5}-7.2^n=\left(3^{n+3}-2.3^n\right)+\left(2^{n+5}-7.2^n\right)\)

\(=3^n\left(3^3-2\right)+2^n\left(2^5-7\right)\)

\(=3^n\left(27-2\right)+2^n\left(32-7\right)\)

\(=3^n.25+2^n.25\)

\(=25\left(3^n+2^n\right)⋮25\)

vậy \(3^{n+3}-2.3^n+2^{n+5}-7.2^n⋮25\left(đpcm\right)\)

10 tháng 3 2017

tách rồi nhân phân phối là đc

1 tháng 3 2017

Ta có : 3n + 2 - 2n + 2 + 3n - 2n 

= (3n + 2 + 3n) - (2n + 2 + 2n)

= 3n(32 + 1) - 2n - 1(23 + 2)

= 3n.10 - 2n - 1.10

= 10.(3n - 2n - 1)

Mà 3n - 2n - 1 thuộc Z

Nên 10.(3n - 2n - 1) chia hết cho 10

Vậy  3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10