Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
a) Ta có: P = (a + 3)(a - 5) + (a + 3)(a + 1) (Với a \(\inℤ\))
=> a sẽ có thể là một số lẻ hay một số chẵn
Xét a là số lẻ:
=> P = (a + 3)(a - 5 + a + 1)
=> P = (a + 3)(2a - 4)
Vì a là số lẻ nên a + 3 là số chẵn
=> P là số chãn
=> ĐPCM
Với a là số chẵn:
Vì a là số chẵn nên 2a + 4 cũng là số chãn
=> P là số chãn
=> ĐPCM
a) \(P=\left(a+3\right)\left(a-5\right)+\left(a+3\right)\left(a+1\right)=\left(a+3\right)\left(a-5+a+1\right)=\left(a+3\right)\left(2a-4\right)\)
\(=2\left(a+3\right)\left(a-2\right)\)là số chẵn.
b) \(Q=\left(a-2\right)\left(a+3\right)-\left(a+2\right)\left(3-a\right)=\left(a-2\right)\left(a+3\right)+\left(a+2\right)\left(a-3\right)\)
\(=a^2+a-6+a^2-a-6=2a^2-12=2\left(a^2-6\right)\)là số chẵn
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
Bài 2: Với n lẻ thì n+3 chẵn => Cả tích chia hết cho 2
Với n chẵn thì n+6 hcawnx => Cả tích chia hết cho 2
Bài 3: Xét 2 trường hợp n chẵn, lẻ như bài 2
Bài 4 bạn ghi thiếu đề
1:Từ 1 đến 100 có bao nhiêu số chia hết cho 2 , bao nhiêu số chia hết cho 5 ?
2:Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) . ( n + 6 ) chia hết cho 2 ?
3:Chứng tỏ gọi rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 ?
4: Gọi A = n2 + n + 1 . ( n e N ) ( nghĩa là n thuộc stn bất kì )
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
A)
với n chẵn
=>3n+2 chẵn
=> (n+1)(3n+2) chẵn
với n lẻ => = 2k+1(k là số tự nhiên)
n+1=2k+1+1=2k+2 chẵn
=> (n+1)(3n+2) chẵn
=> vậy với mọi n thì (n+1)(3n+2) chẵn
B)
với m chẵn , n chẵn =>m.n chẵn
=> m.n(m+n) chẵn
với m chẵn , n lẻ => m.n chẵn
=> m.n(m+n) chẵn
với m lẻ , n chẵn => m.n chẵn
=> m.n(m+n) chẵn
với m lẻ , n lẻ => ( m+n) chẵn
=> m.n(m+n) chẵn
=> vậy với mọi m,n là số tự nhiên thì m.n(m+n) chẵn
học tốt
a)
*Nếu n=2k(k thuộc N) suy ra 3n+2=6k+2 là số chẵn nên (n+1)(3n+1) là số chẵn (1)
*Nếu n=2k+1(k thuộc N) suy ra n+1=2k+2 là số chẵn nên (n+1)(3n+1) là số chẵn (2)
Từ (1) và (2) suy ra với mọi số tự nhiên n thì (n+1)(3n+1) đều là số chẵn(Đpcm)
b)Ta có:
mn(m+n)=mn[(m-1)-(n-1)]=mn(m-1)-,mn(n-1)
Ta thấy m(m-1) và n(n-1) là hai số tự nhiên liên tiếp nên chúng luôn chia hết cho 2 suy ra chúng là số chẵn suy ra mn(m+n) là số chẵn(đpcm)
Thanks!
Xét nếu \(a\)lẻ \(\Rightarrow a+5\)là lẻ + lẻ = chẵn
\(\Rightarrow a\left(a+5\right)=\)lẻ . chẵn = chẵn hay \(a\left(a+5\right)⋮2\)
Xét nếu \(a\)chẵn \(\Rightarrow a+5\)là chẵn + lẻ = lẻ
\(\Rightarrow a\left(a+5\right)=\)chẵn . lẻ = chẵn hay \(a\left(a+5\right)⋮2\)
\(\Rightarrowđpcm\)