Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi d=ƯCLN(15n+1;30n+1)
=>30n+2-30n-1 chia hết cho d
=>1 chia hết cho d
=>Đây là phân số tối giản
b: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>Phân số tối giản
a: Gọi d=UCLN(4n+1;6n+1)
\(\Leftrightarrow3\left(4n+1\right)-2\left(6n+1\right)⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>4n+1/6n+1 là phân số tối giản
b: Gọi a=UCLN(5n+3;3n+2)
\(\Leftrightarrow3\left(5n+3\right)-5\left(3n+2\right)⋮a\)
\(\Leftrightarrow-1⋮a\)
=>a=1
=>5n+3/3n+2 là phân số tối giản
a: Gọi a=UCLN(5n+14;n+3)
\(\Leftrightarrow5n+14-5n-15⋮a\)
\(\Leftrightarrow-1⋮a\)
hay a=1
=>5n+14/n+3 là phân số tối giản
b: Gọi d=UCLN(3n-2;4n-3)
\(\Leftrightarrow4\left(3n-2\right)-3\left(4n-3\right)⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>3n-2/4n-3 là phân số tối giản
\(A=16^n-15n-1=\left(16^n-1^n\right)-15n\)
Áp dụng hằng đẳng thức phụ :
\(a^k-b^k=\left(a-b\right)\left(a^{k-1}+a^{k-2}b+a^{k-3}b^2+.....+ab^{k-2}+b^{k-1}\right)\)
ta có : \(16^n-1^n=\left(16-1\right)\left(16^{n-1}+16^{n-2}+.....+16^2+16+1\right)\)
\(=15\left(16^{n-1}+16^{n-2}+.....+16^2+16+1\right)⋮15\)
Do đó \(16^n-1^n⋮15\)
Mà \(15n⋮15\) nên \(A=\left(16^n-1^n\right)-15n⋮15\)(đpcm)
Gọi d là UCLN(21n + 4,14n+3)
Ta có: 21n + 4 chia hết cho d => 2(21n + 4) chia hết cho d => 42n + 8 chia hết cho d
14n + 3 chia hết cho d => 3(14n + 3) chia hết cho d => 42n + 6 chia hết cho d
=> 42n + 8 - (42n + 6) chia hết cho d
=> 2 chia hết cho d => d = {1;2}
Mà 14n + 3 lẻ => d lẻ => d khác 2 => d = 1
=> UCLN(21n+4,14n+3) = 1
( 21n + 4 , 19n +3 )
Gọi d thuộc ƯC ( 21n +4, 19n +3 )
=> 21n + 4 chia hết cho d
19n+3 chia hết cho d
=> 21. ( 19n+3) - 19. ( 21n +4 ) chia hết cho d
=> 399n + 63 - 399n + 76
=> 13
( mình chỉ làm đc đến đây thôi , xin lỗi bạn )
Làm tiếp theo của bạn Gia Hân Nguyễn nha:
Vì 13 chia hết cho d suy ra d thuộc các số 1,13
mà 13 là SNT suy ra(21n+4,19n+3)=1