Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
â) Ta có : \(2n-1⋮n+1\Leftrightarrow2n+2-2-1⋮n+1\)
\(\Leftrightarrow2\left(n+1\right)-2-1⋮n+1\)\(\Leftrightarrow2\left(n+1\right)-3⋮n+1\)
\(\Leftrightarrow2n-1⋮n+1\)khi \(3⋮n+1\Rightarrow n+1\in\)Ước của \(3\) \
\(\Leftrightarrow n+1\in\left(1;-1;3;-3\right)\)
\(\Leftrightarrow n\in\left(0;-2;2;-4\right)\)
Vậy \(n\in\left(-4;-2;0;2\right)\)
b) Ta có :\(9n+5⋮3n-2\Rightarrow3\left(3n-2\right)+6+5⋮3n-2\)
\(\Rightarrow3\left(3n-2\right)+11⋮3n-2\)
\(\Rightarrow9n+5⋮3n-2\)Khi \(11⋮3n-2\)
\(\Rightarrow3n-2\in U\left(11\right)\)
\(\Rightarrow3n-2\in\left(-11;-1;1;11\right)\)
\(\Rightarrow n\in\left(-3;1;\right)\)
Phần c) bạn tự làm nhé!
a) Gọi d là UCLN ( n ; n+1 )
n+1 chia hết cho d
n chia hết cho d
-> n+1-n chia hết cho d
-> 1chia hết cho d
=>N và n+1 là 2 số nguyên tố cùng nhau
=>ĐPCM
a: Gọi d=ƯCLN(2n+2;2n+3)
=>2n+3-2n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>2n+2 và 2n+3 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(2n+1;n+1)
=>2n+1 chia hết cho d và n+1 chia hết cho d
=>2n+2 chia hết cho d và 2n+1 chia hết cho d
=>2n+2-2n-1 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
\(B=3^2+3^3+...+3^{99}\)
\(3B=3^3+3^4+...+3^{100}\)
\(3B-B=\left(3^3+3^4+...+3^{100}\right)-\left(3^2+3^3+...+3^{99}\right)\)
\(2B=3^{100}-3^2\)
\(B=\frac{3^{100}-9}{2}\)
\(2B+9=3^{2n+4}\)
\(\Leftrightarrow3^{2n+4}=3^{100}\)
\(\Leftrightarrow2n+4=100\)
\(\Leftrightarrow n=48\).
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
a) Đặt UCLN (2n+1;2n+3)=d
TC UCLN(2n+1;2n+3)=d
=>\(\hept{\begin{cases}2n+1:d\\2n+3:d\end{cases}}\)
=>(2n+3)-(2n+1):d
=>2:d
=>d e U(2)={1;2}
Mà 2n+1 lẻ=> d lẻ=>d=1
b)
Đặt UCLN (2n+5;3n+7)=d
TC UCLN(2n+5;3n+7)=d
=>\(\hept{\begin{cases}2n+5:d=>6n+15:d\\3n+7:d=>6n+14:d\end{cases}}\)
=>(6n+15)-(6n+14):d
=>1:d
=>d=1
phần c bạn tự làm nốt nhé
học tốt nhé
a) Gọi d ∈ ƯC(n+1,n+2)
\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\n+2⋮d\end{matrix}\right.\Rightarrow n+2-\left(n+1\right)⋮d\)
=> 1 ⋮ d => d = 1
=> n+1 và n+2 là 2 số nguyên tố cùng nhau
b) tương tự phần a , lấy 2n+3-(2n+2)
c) Gọi d∈ƯC(2n+1,n+1)
=> \(\left\{{}\begin{matrix}2n+1⋮d\\n+1⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\2n+2⋮d\end{matrix}\right.\Rightarrow2n+2-\left(2n+1\right)⋮d\)
=> 1 ⋮ d => d = 1
=> 2n+1 và n+1 nguyên tố cùng nhau
d) tương tự , nhân 3 vào n+1
a) Gọi d ∈ ƯC(n+1,n+2)
\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\n+2⋮d\end{matrix}\right.\Rightarrow n+2-\left(n+1\right)⋮d⇒⎩⎨⎧n+1⋮dn+2⋮d⇒n+2−(n+1)⋮d
=> 1 ⋮ d => d = 1
=> n+1 và n+2 là 2 số nguyên tố cùng nhau
b) tương tự phần a , lấy 2n+3-(2n+2)
c) Gọi d∈ƯC(2n+1,n+1)
=> \left\{{}\begin{matrix}2n+1⋮d\\n+1⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\2n+2⋮d\end{matrix}\right.\Rightarrow2n+2-\left(2n+1\right)⋮d⎩⎨⎧2n+1⋮dn+1⋮d⇒⎩⎨⎧2n+1⋮d2n+2⋮d⇒2n+2−(2n+1)⋮d
=> 1 ⋮ d => d = 1
=> 2n+1 và n+1 nguyên tố cùng nhau
d) tương tự , nhân 3 vào n+1