chứng minh rằng với mọi số tự nhiên n , các số sau là các số nguyên tố cùng nhau

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2022

a) Gọi d ∈ ƯC(n+1,n+2)

\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\n+2⋮d\end{matrix}\right.\Rightarrow n+2-\left(n+1\right)⋮d\)

=> 1 ⋮ d => d = 1

=> n+1 và n+2 là 2 số nguyên tố cùng nhau

b) tương tự phần a , lấy 2n+3-(2n+2)

c) Gọi d∈ƯC(2n+1,n+1)

=> \(\left\{{}\begin{matrix}2n+1⋮d\\n+1⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\2n+2⋮d\end{matrix}\right.\Rightarrow2n+2-\left(2n+1\right)⋮d\)

=> 1 ⋮ d => d = 1

=> 2n+1 và n+1 nguyên tố cùng nhau

d) tương tự , nhân 3 vào n+1

29 tháng 9 2022

a) Gọi d ∈ ƯC(n+1,n+2)

\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\n+2⋮d\end{matrix}\right.\Rightarrow n+2-\left(n+1\right)⋮dn+1dn+2dn+2(n+1)d

=> 1 ⋮ d => d = 1

=> n+1 và n+2 là 2 số nguyên tố cùng nhau

b) tương tự phần a , lấy 2n+3-(2n+2)

c) Gọi d∈ƯC(2n+1,n+1)

=> \left\{{}\begin{matrix}2n+1⋮d\\n+1⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\2n+2⋮d\end{matrix}\right.\Rightarrow2n+2-\left(2n+1\right)⋮d2n+1dn+1d2n+1d2n+2d2n+2(2n+1)d

=> 1 ⋮ d => d = 1

=> 2n+1 và n+1 nguyên tố cùng nhau

d) tương tự , nhân 3 vào n+1

 

29 tháng 4 2018

â) Ta có : \(2n-1⋮n+1\Leftrightarrow2n+2-2-1⋮n+1\)

              \(\Leftrightarrow2\left(n+1\right)-2-1⋮n+1\)\(\Leftrightarrow2\left(n+1\right)-3⋮n+1\)

               \(\Leftrightarrow2n-1⋮n+1\)khi  \(3⋮n+1\Rightarrow n+1\in\)Ước của \(3\)                            \

                \(\Leftrightarrow n+1\in\left(1;-1;3;-3\right)\)

                 \(\Leftrightarrow n\in\left(0;-2;2;-4\right)\)

Vậy \(n\in\left(-4;-2;0;2\right)\)

b) Ta có :\(9n+5⋮3n-2\Rightarrow3\left(3n-2\right)+6+5⋮3n-2\)

               \(\Rightarrow3\left(3n-2\right)+11⋮3n-2\)

               \(\Rightarrow9n+5⋮3n-2\)Khi \(11⋮3n-2\)

               \(\Rightarrow3n-2\in U\left(11\right)\)

               \(\Rightarrow3n-2\in\left(-11;-1;1;11\right)\)

               \(\Rightarrow n\in\left(-3;1;\right)\)

Phần c) bạn tự  làm nhé!

1 tháng 11 2015

a) Gọi d là UCLN ( n ; n+1 )                    

n+1 chia hết cho d                                             

n chia hết cho d                                               

-> n+1-n chia hết cho d                                 

-> 1chia hết cho d

=>N và n+1 là 2 số nguyên tố cùng nhau

=>ĐPCM                                       

1 tháng 11 2015

Còn mấy câu còn lại đâu

 

a: Gọi d=ƯCLN(2n+2;2n+3)

=>2n+3-2n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>2n+2 và 2n+3 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(2n+1;n+1)

=>2n+1 chia hết cho d và n+1 chia hết cho d

=>2n+2 chia hết cho d và 2n+1 chia hết cho d

=>2n+2-2n-1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

 

13 tháng 8 2023

cái bên dưới viết thiếu chữ c chứ đó là phần c 

 

27 tháng 9 2021

các bạn giúp mình với

27 tháng 9 2021

Viết rõ đầu bài ra đi em . chứ nhìn ko hiểu j cả

DD
28 tháng 9 2021

\(B=3^2+3^3+...+3^{99}\)

\(3B=3^3+3^4+...+3^{100}\)

\(3B-B=\left(3^3+3^4+...+3^{100}\right)-\left(3^2+3^3+...+3^{99}\right)\)

\(2B=3^{100}-3^2\)

\(B=\frac{3^{100}-9}{2}\)

\(2B+9=3^{2n+4}\)

\(\Leftrightarrow3^{2n+4}=3^{100}\)

\(\Leftrightarrow2n+4=100\)

\(\Leftrightarrow n=48\).

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

23 tháng 12 2021

a) Đặt UCLN (2n+1;2n+3)=d

TC UCLN(2n+1;2n+3)=d

=>\(\hept{\begin{cases}2n+1:d\\2n+3:d\end{cases}}\)

=>(2n+3)-(2n+1):d

=>2:d

=>d e U(2)={1;2}

Mà 2n+1 lẻ=> d lẻ=>d=1

b) 

Đặt UCLN (2n+5;3n+7)=d

TC UCLN(2n+5;3n+7)=d

=>\(\hept{\begin{cases}2n+5:d=>6n+15:d\\3n+7:d=>6n+14:d\end{cases}}\)

=>(6n+15)-(6n+14):d

=>1:d

=>d=1

phần c bạn tự làm nốt nhé

học tốt nhé