Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co \(a^4+b^4+2\ge2a^2b^2+2\)\(=2\left(a^2b^2+1\right)\ge2\cdot2ab\)\(=4ab\)
Dau "=" xay ra khi va chi khi a=b
Chứng minh bđt phụ :
Ta có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)với \(\forall x;y;z\)
\(\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)(*)
Áp dụng bđt (*), ta có:
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)(1)
Lại có :\(a^2b^2+b^2c^2+c^2a^2\ge abbc+bcca+caab=abc\left(a+b+c\right)\)(2)
Từ (1) và (2) suy ra:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Dấu = xảy ra khi a=b=c
Vậy \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Phần dấu = xảy ra không biết bạn có cần không nhưng thầy mình bảo phải ghi vào mới được điểm tối đa
a) \(a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng với mọi a,b,c)
b)\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
Câu a :
Ta có :
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
Dấu = xảy ra khi \(a=b\)
Câu b :
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( đúng )
Dấu = xảy ra khi \(a=b=c\)
"Chấm" nhẹ hóng cao nhân ạ :)
P/s: mong các bác giải theo cách lớp 8 ạ :) Tặng 5SP / 1 câu nhé ;)
Không mất tính tổng quát giả sử \(a\ge b\ge c>0\Rightarrow\hept{\begin{cases}b+c\le a+c\le a+b\\\frac{a^a}{b+c}\ge\frac{b^a}{c+a}\ge\frac{c^a}{a+b}\end{cases}}\)
Sử dụng bất đẳng thức Chebyshev cho 2 dãy đơn ngược chiều ta có:
\(VT\left(1\right)=\frac{1}{2\left(a+b+c\right)}\left(\frac{a^a}{b+c}+\frac{b^a}{c+a}+\frac{c^a}{a+b}\right)\left[\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right]\ge\)
\(\frac{1}{2\left(a+b+c\right)}\cdot3\left[\frac{a^a}{b+c}\left(b+c\right)+\frac{b^a}{c+a}\left(c+a\right)+\frac{c^a}{a+b}\left(a+b\right)\right]=\frac{3\left(a^a+b^a+c^a\right)}{2\left(a+b+c\right)}\)\(=\frac{3}{2}\cdot\frac{a^a+b^a+c^a}{a+b+c}\)
=> đpcm
a, Ta có : \(a^2+a+1=a^2+2\dfrac{1}{2}a+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
Vậy : \(a^2+a+1>0\)
b, Xét hiệu : \(-a^2-6a-9\)\(=-\left(a^2+6a+9\right)=-\left(a+3\right)^2\le0\)
Vậy : \(-a^2-6a\le9\) Dấu "=" xảy ra khi a = - 3
đề câu b phải là -a^2-6a chứ
bạn xem lại đề hộ mk nếu đúng mk sẽ làm cho nha
dễ lăm chỉ cần áp dụng bài toán phụ a2+b2>=2ab là ra chúc bạn làm được bài tốt nhé mình chỉ gợi ý cho thôi
nhân 2 cả 2 vế lên r biến đổi tương đương