Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ mà cô nương
\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)
\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)
ta có
\(a=-5-b\)
suy ra
\(a^3-b^3=19\left(-5-2b\right)\) " xong "
2, trên mạng đầy
3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)
4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm
5. trên mạng đầy
6 , trên mang jđầy
Ta có a - b + b - c + c - a = 0 \(⋮30\)
=> (a - b) + (b - c) + (c - a) \(⋮\)30 (0)
Xét hiệu (a - b)5 + (b - c)5 + (c - a)5 - [(a - b) + (b - c) + (c - a)]
= [(a - b)5 - (a - b)] + [(b - c)5 - (b - c)] + [(c - a)5 - (c - a)]
Nhận thấy : (a - b)5 - (a - b) = (a - b)[(a - b)4 - 1]
= (a - b)[(a - b)2 - 1][(a - b)2 + 1]
= (a - b)[(a - b)2 - 1][(a - b)2 - 4 + 5]
= (a - b)[(a - b)2 - 1][(a - b)2 - 4] + 5(a - b)[(a - b)2 - 1]
= (a - b - 2)(a - b - 1)(a - b)(a - b + 1)(a - b + 2) + 5(a - b - 1)(a - b)(a - b + 1)
Nhận thấy (a - b - 2)(a - b - 1)(a - b)(a - b + 1)(a - b + 2) + 5(a - b - 1) \(⋮\)30 (tích 5 số nguyên liên tiếp) (1)
Lại có (a - b - 1)(a - b)(a - b + 1) \(⋮\)6
=> 5(a - b - 1)(a - b)(a - b + 1) \(⋮\)30 (2)
Từ (1) và (2) => (a - b - 2)(a - b - 1)(a - b)(a - b + 1)(a - b + 2) + 5(a - b - 1)(a - b)(a - b + 1) \(⋮\)30
=> (a - b)5 + (b - c)5 + (c - a)5 - [(a - b) + (b - c) + (c - a)] \(⋮\)30 (4)
Từ (0) ; (4) => (a - b)5 + (b - c)5 + (c - a)5 \(⋮\)30 (đpcm)
a) \(A=\left(4n+3\right)^2-5^2=\left(4n+3-5\right)\left(4n+3+5\right)=\left(4n-2\right)\left(4n+8\right)\)
\(=8\left(n-1\right)\left(n+2\right)\). Vì A chứa thừa số 8 nên A chia hết cho 8
b) \(B=\left(2n+3\right)^2-3^2=\left(2n+3-3\right)\left(2n+3+3\right)=2n\left(2n+6\right)=4n\left(n+3\right)\)
Vì B chứa thừa số 4 nên B chia hết cho 4
\(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a^2+2a\right)\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)
Tích 3 số tự nhiên liên tiếp chia hết cho 3 và có ít nhất 1 số chẵn nên \(a\left(a+1\right)\left(a+2\right)⋮6\)
Vậy \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\left(đpcm\right)\)
Ta có \(n^3+3n^2+2n=n(n^2+3n+2)=n(n+1)(n+2)\) là tích ba số nguyên liên tiếp. Trong hai số liên tiếp luôn có một chia hết cho 2, trong ba số liên tiếp luôn có một chia hết cho 3. Vậy tích chia hết cho 6.
Ta có \((n^2+n-1)^2-1=(n^2+n-2)(n^2+n)=(n-1)(n+2)n(n+1)=(n-1)n(n+1)(n+2)\) là tích bốn số nguyên liên tiếp.
Trong ba số liên tiếp luôn có một chia hết cho 3. Vậy tích chia hết cho 3. Mặt khác trong bốn số liên tiếp phải có hai số chẵn liên tiếp. Hai số chẵn liên tiếp phải có một số chia hết cho 4. Vậy tích sẽ chia hết cho 8. Từ hai điều đó suy ra tích chia hết 3x8=24.
Giả sử \(\hept{\begin{cases}a⋮p\\b⋮̸p\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮p\\b^2⋮̸p\end{cases}}\)
=> \(\hept{\begin{cases}a^2:p\text{ dư }4k;4k+1;4k+2\\b^2:p\text{ dư }4k;4k+1;4k+2\end{cases}}\)
Chọn ngẫu nhiên các cặp a2 ; b2 bất kì nhận thấy
a2 + b2 \(⋮̸\)p (trái với giả thiết)
=> Điều giả sử là sai => đpcm
b, vì a và b là 2 stn liên tiếp nên a=b+1 hoặc b=a+1
cho b=a+1
\(A=a^2+b^2+c^2=a^2+b^2+a^2b^2=a^2+\left(a+1\right)^2+a^2\left(a+1\right)^2\)
\(=a^2+\left(a+1\right)^2\left(a^2+1\right)=a^2+\left(a^2+2a+1\right)\left(a^2+1\right)\)
\(=a^2+2a\left(a^2+1\right)+\left(a^2+1\right)^2=\left(a^2+a+1\right)^2\)
\(\Rightarrow\sqrt{A}=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1=a\left(a+1\right)+1=ab+1\)
vì a b là 2 stn liên tiếp nên sẽ có 1 số chẵn\(\Rightarrow ab\)chẵn \(\Rightarrow ab+1\)lẻ \(\Rightarrow\sqrt{A}\)lẻ (đpcm)
Làm cả câu a đi nhé! Nếu bạn làm được cả câu a thì mình k! ^_^ *_*
B1) Từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{xy+yz+zx}{xyz}=0\)
\(\Rightarrow xy+yz+zx=0\)
Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(=x^2+y^2+z^2+2.0\)
\(=x^2+y^2+z^2\left(đpcm\right)\)
B2) \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a;b\\\left(b-c\right)^2\ge0\forall b;c\\\left(c-a\right)^2\ge0\forall c;a\end{cases}\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c\left(đpcm\right)}\)
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right).2=\left(ab+bc+ca\right).2\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Ta có: \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(c-a\right)^2\ge0\forall a,c\end{cases}}\)\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)
Vậy \(a^2+b^2+c^2=ab+bc+ca\)thì \(a=b=c\)