Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(x^2+4x+5\)
\(=x^2+2.x.2+4+1\)
\(=\left(x+2\right)^2+1\)
Vì \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+1>0\forall x\)
\(\Rightarrow x^2+4x+5>0\forall x\)
b) Ta có:
\(x^2-x+1\)
\(=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow x^2-x+1>0\forall x\)
c) Ta có:
\(12x-4x^2-10\)
\(=-\left(4x^2-12x+10\right)\)
\(=-\left[\left(2x\right)^2-2.2x.3+9+1\right]\)
\(=-\left(2x-3\right)^2-1\)
Vì \(-\left(2x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(2x-3\right)^2-1< 0\forall x\)
\(\Rightarrow12x-4x^2-10< -1\)
1) \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)
\(\Leftrightarrow 4x^2 + 14x - 10x - 35=4x^2-25\)
\(\Leftrightarrow4x^2-4x^2+14x-10x=35-25\)
\(\Leftrightarrow4x=10\)
\(\Leftrightarrow x=\dfrac{10}{4}=\dfrac{5}{2}\)
Vậy \(x=\dfrac{5}{2}\)
2) \(x^2-4x+5\)
\(=-(4x-x^2-5 )\)
\(= -[-(x^2-4x)-5 ]\)
\(=-[ -(x^2-2x.2+4-4)-5 ]\)
\(= -[-(x-2)^2+4-5 ]\)
\(= -[-(x-2)^2-1 ]\)
Vì \(-(x-2)^2 ≤0\)\(\forall x\) \(\Rightarrow\) \(-(x-2)^2-1<0\) \(\forall x\)
\(\Rightarrow\)\(-[-(x-2)^2-1 ]>0\)\(\forall x\)
\(\Rightarrow x^2-4x+5>0\)\(\forall x\)
2.
Từ giả thiết, ta có :
\(\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}+1-\frac{1}{1+d}\)
\(=\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\ge3\sqrt[3]{\frac{b.c.d}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}\)
Tương tự, ta cũng có :
\(\frac{1}{1+b}\ge3\sqrt[3]{\frac{c.d.a}{\left(1+c\right)\left(1+d\right)\left(1+a\right)}}\)
\(\frac{1}{1+c}\ge3\sqrt[3]{\frac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)
\(\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Nhân vế theo vế 4 BĐT vừa chững minh rồi rút gọn ta được :
\(abcd\le\frac{1}{81}\left(đpcm\right)\)
2) Từ \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+d}\ge3.\)
\(\Rightarrow\frac{1}{1+a}\ge\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)+\left(1-\frac{1}{1+d}\right)\)
\(=\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\ge3\sqrt[3]{\frac{bcd}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}.\)(BĐT AM-GM)
Tương tự :
\(\frac{1}{1+b}\ge3\sqrt[3]{\frac{acd}{\left(1+a\right)\left(1+c\right)\left(1+d\right)}}\)
\(\frac{1}{1+c}\ge3\sqrt[3]{\frac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)
\(\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}.\)
Từ đó suy ra:
\(\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}.\frac{1}{1+d}\ge3.3.3.3\sqrt[3]{\frac{\left(abcd\right)^3}{\left[\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)\right]^3}}\)
\(\Leftrightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\ge\frac{81abcd}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}.\)
\(\Leftrightarrow81abcd\le1\Leftrightarrow abcd\le\frac{1}{81}\)
Dấu '=' xảy ra khi \(a=b=c=d=\frac{1}{3}.\)
3)Ta có: \(\left(\sqrt{a}+\sqrt{b}\right)^8=\left[\left(\sqrt{a}+\sqrt{b}\right)^2\right]^4=\left(a+b+2\sqrt{ab}\right)^4.\)(1)
Với \(a,b\ge0\),áp dụng BĐT AM-GM cho (a+b) và (\(2\sqrt{ab}\)) ta được
\(\left(a+b\right)+2\sqrt{ab}\ge2\sqrt{\left(a+b\right)2\sqrt{ab}}\)(2)
Từ (1) và (2) suy ra:
\(\left(\sqrt{a}+\sqrt{b}\right)^8\ge\left(2\sqrt{\left(a+b\right)2\sqrt{ab}}\right)^4\)
\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^8\ge64ab\left(a+b\right)^2.\)
Dấu '=' xảy ra khi \(a+b=2\sqrt{ab}\Leftrightarrow a=b\)
1) Với \(x\le\frac{2}{3}\Rightarrow2-3x\ge0\)
Khi đó ,áp dụng bất đẳng thức AM-GM cho 2 số ta được:
\(\left(2-3x\right)+\frac{9}{2-3x}\ge2\sqrt{\left(2-3x\right)\frac{9}{2-3x}}=2.3=6\)
\(\Leftrightarrow2+\left(2-3x\right)+\frac{9}{2-3x}\ge2+6\)
\(\Leftrightarrow4-3x+\frac{9}{2-3x}\ge8\)
Dấu '=' xảy ra khi \(2-3x=\frac{9}{2-3x}\Leftrightarrow\left(2-3x\right)^2=9\Leftrightarrow2-3x=3\Leftrightarrow x=-\frac{1}{3}\)( vì 2-3x>0)
Đặt \(A=2x^4+2x+1\)
\(=2x^4+4x^3+2x^2-2x^2-4x^3+2x+1\)
\(=\left(2x^4-4x^3+2x^2\right)+\left(4x^3-2x^2+2x\right)+1\)
\(=2x^2\left(x^2-2x+1\right)+2x\left(2x^2-x+1\right)+1\)
\(=2x^2\left(x-1\right)^2+2x\left[\left(x\sqrt{2}\right)^2-2.x\sqrt{2}.\frac{1}{2\sqrt{2}}+\frac{1}{8}-\frac{1}{8}+1\right]+1\)
\(=2x^2\left(x-1\right)^2+2x\left[\left(x\sqrt{2}-\frac{1}{2\sqrt{2}}\right)^2+\frac{7}{8}\right]+1\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0;\forall x\\\left(x\sqrt{2}-\frac{1}{2\sqrt{2}}\right)^2\ge0;\forall x\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x^2\left(x-1\right)^2\ge0;\forall x\\\left(x\sqrt{2}-\frac{1}{2\sqrt{2}}\right)^2+\frac{7}{8}>0;\forall x\end{cases}}\)
\(\Rightarrow2x^2\left(x-1\right)^2+2x\left[\left(x\sqrt{2}-\frac{1}{2\sqrt{2}}\right)^2+\frac{7}{8}\right]+1>0;\forall x\)
Hay \(A>0;\forall x\)
Áp dụng AM GM
\(4x-5+\frac{1}{x-1}=4\left(x-1\right)+\frac{1}{x-1}-1\ge2\sqrt{4\left(x-1\right).\frac{1}{x-1}}-1=3\)(đpcm)