Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(\sqrt{a+b}\right)^2=a+b\) (1)
: \(\left(\sqrt{a+b}\right)^2=a+b+2\sqrt{ab}\) ( 2 )
Với a , b dương nên \(2\sqrt{ab}>0\) ,do đó từ ( 1) và ( 2 ) suy ra :
\(\left(\sqrt{a+b}\right)^2< \left(\sqrt{a}+\sqrt{b}\right)\)hay \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)=> đpcm
Trời thì ý bn là chứng minh bất đẳng thức côsi chứ j
Đây
Ta có: \(a,b\ge0\) nên \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
Áp dụng hằng đẳng thức
Ta có: \(\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2-2\sqrt{a}\cdot\sqrt{b}\ge0\)
Suy ra \(a+b-2\sqrt{ab}\ge0\)
Suy ra \(a+b\ge2\sqrt{ab}\)và dấu ''='' xảy ra khi và chỉ khi a=b
Câu tiếp tương tự
Với lại hình như cái này lớp 7 đâu có học đâu mà hỏi nhỉ ????????
Bài này là bài của lớp 9 nha!! có chỗ nào ko hiểu ib
\(a,A=\sqrt{18}+\sqrt{50}-\frac{1}{2}\sqrt{98}.\)
\(=3\sqrt{2}+5\sqrt{2}-\frac{7}{2}\sqrt{2}\)
\(=\sqrt{2}\left(3+5-\frac{7}{2}\right)\)
\(=\frac{9}{2}\sqrt{2}\)
\(b,B=\left(2\sqrt{3}+7\right)\left(2\sqrt{3}-7\right)\)
\(=2^2\sqrt{3^2}-7^2\)
\(=12-49=-37\)
a )
\(A=\sqrt{18}+\sqrt{50}-\frac{1}{2}\sqrt{98}\)
\(A=3\sqrt{2}+5\sqrt{2}-\frac{7}{2}\sqrt{2}\)
\(A=(3+5-\frac{7}{2})\sqrt{2}\)
\(A=\frac{9}{2}\sqrt{2}=\frac{9\sqrt{2}}{2}\)
b)
\(B=\left(2\sqrt{3}+7\right)\left(2\sqrt{3}-7\right)=\left(2\sqrt{3}\right)^2-7^2=12-49=-37\)
\(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)
\(\Leftrightarrow\left(\sqrt{a+b}\right)^2< \left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow a+b< a+b+2\sqrt{ab}\)
\(\Leftrightarrow2\sqrt{ab}>0\left(luondung\right)\)
Vậy ta có đpcm