Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) gọi ƯCLN( 3n+13; 3n+14) = d \(\Rightarrow\hept{\begin{cases}3n+13⋮d\\3n+14⋮d\end{cases}\Rightarrow\left(3n+14\right)-\left(3n+13\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
b) \(\)sai đề
vì \(3n+15=3\left(n+5\right)⋮3\); \(6n+9=3\left(2n+3\right)⋮3\)
nên có ƯC( 3n+15; 6n+9)=3
a) Gọi d là ước chung nguyên tố của 3n + 13 và 3n + 14
=> 3n + 13 chia hết cho d ; 3n + 14 chia hết cho d
=> ( 3n+ 14 ) - ( 3n + 13 ) chia hết cho d
=> 1 chia hết cho d
=>d = 1 ( vì d là ƯCLN )
=> ƯCLN ( 3n + 13, 3n + 14 )
Vậy ƯCLN ( 3n + 13, 3n + 14 ) = 1
( câu b mình thấy sai sai thế nào ấy, bạn xem lại đề nhé )
Gọi d=ƯCLN(7n+1;6n+1)
=>42n+6-42n-7 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
Việc khẳng định ƯCLN (2n+1, 9n+6)=3 là sai nhé bạn. 3 là ƯCLN có thể xảy ra của $2n+1, 9n+6$ thôi. Còn việc đưa ra khẳng định ƯCLN(2n+1, 9n+6)=3 là sai vì 2n+1 chưa chắc đã chia hết cho 3 với n là số tự nhiên.
Gọi ƯCLN (2n+1;6n+5) = d ( d thuộc N sao )
=> 2n+1 và 6n+5 đều chia hết cho d
=> 3.(2n+1) và 6n+5 đều chia hết cho d
=> 6n+3 và 6n+5 đều chia hết cho d
=> 6n+5-(6n+3) chia hết cho d
=> 2 chia hết cho d
Mà 2n+1 lẻ nên d lẻ
=> d=1
=> ƯCLN (2n+1;6n+5) = 1
=> ĐPCM
k mk nha
Gọi UCLN(2n+1;6n+5)=d
Ta có: 2n+1 chia hết cho d\(\Rightarrow3\left(2n+1\right)\) chia hết cho d\(\Rightarrow6n+3\) chia hết cho d
6n+5 chia hết cho d
\(\Rightarrow\left(6n+5\right)-\left(6n+3\right)\) chia hết cho d
\(\Rightarrow2\) chia hết cho d
\(\Rightarrow d\in\left\{1,2\right\}\).Vì 2n+1 lẻ nên không chia hêt cho 2
\(\Rightarrowđpcm\)
tớ chỉ làm cho cậu 1 cái thôi, còn lại cậu tự giải tương tự
Đặt d= ƯCLN (2n+1, 2n+3)
\(\Rightarrow2n+1⋮d\) và\(3n+2⋮d\)
=>\(3\left(2n+1\right)⋮d\) và\(2\left(3n+2\right)⋮d\)
\(\Rightarrow6n+3⋮d\) và\(6n+4⋮d\)
=>6n+4 - (6n+3) \(⋮d\)
=>\(1⋮d\)
=>d=1
Vậy cặp số trên nguyên tố cùng nhau với mọi STN n
a: \(\left\{{}\begin{matrix}14n+3⋮d\\7n+2⋮d\end{matrix}\right.\)
\(\Leftrightarrow-1⋮d\)
hay d=1
A,
Từ đề bài ta có
\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
suy ra d=1 suy ra đpcm
B nhân 3 vào số đầu tiên
nhâm 2 vào số thứ 2
rồi trừ đi được đpcm
C,
Nhân 2 vào số đầu tiên rồi trừ đi được đpcm
Gọi d là ước chung lớn nhất của 6n + 1 và 7n + 1
=> 6n + 1 chia hết cho d và 7n + 1 chia hết cho d
=> ( 7n + 1 ) - ( 6n + 1 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy ước chung lớn nhất của 6n + 1 và 7n + 1 là 1