Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Khi chia 1 số tự nhiên cho 2, số dư có thể là 0 hoặc 1
=> Khi chia 3 số tự nhiên bất kì cho 2 số dư bằng một trong hai số 0; 1.
=> 2 trong 3 số đó có cùng số dư => Hiệu của 2 số chia hết cho 2
b) Khi chia 1 số tự nhiên cho 5, số dư có thể là 0; 1; 2; 3; 4
=> Khi chia 6 số tự nhiên bất kì cho 5, số dư bằng1 trong 5 số 0; 1; 2; 3; 4.
=> Chắc chắn có 2 trong 6 số đó chia cho 5 có cùng số dư
=> Hiệu của chúng chia hết cho 5
Vậy...
Gọi 3 số cần tìm là a;a+1;a+2
Dễ thấy rằng;
a+2-a=2 chia hết cho 2
Vậy.....................................................
Đem 12 stn cha cho 11 thì nhận đc 12 số dư .Mà 1 stn khi chia cho 11 se nhận đc trog 11 khả năng dư [ 0 đến 10 ]
ta có :
12/11=1 (dư 1)
Theo nguyên lí dircle sẽ tồn tại ít nhất 1+1=2 (số dư = nhau )
Nghĩa là sẽ có 2 stn khi chia cho 11 có cùng số dư
=> Hiệu 2 số đó chia hết cho 11
Chả bjt có đúng k .Nhưng mik nghĩ là 98%
Theo Nguyên lí Đi-rich-lê thì trong 12 số tự nhiên bất kì bao giờ ta cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11 nên =>trong 12 số tự nhiên bất kì bao giờ ta cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11
Đem 12 số tự nhiên trên chia cho 11 thì nhận đc 12 số dư. Mà 1 số tự nhiên khi chia cho 11 sẽ nhận đc 1 trong 11 khả năng dư[0 đến 10].
Ta có 12:11=1[dư 1]
Theo nguyên lí điricle sẽ tồn tại ít nhất
1+1=2[ số dư bằng nhau]
Nghĩa là tồn tại ít nhất 2 số tự nhiên khi chia 11 có cùng số dư. Suy ra hiệu 2 số đó chia hết cho 11
Vậy bài toán đã được chứng minh
a, ta có 5 số tn liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => ĐPCM
Vậy trong 5 số tự nhiên liên tiếp luôn có một số chia hết cho 5
ta thấy 1 số tự nhiên khi chia cho 6 có 6 khả năng dư:0,1,2,3,4,5,
có 6kn dư mà có 7 số=>theo nguyên lí direchlet có ít nhất hai số có cùng số dư
khi đó hiệu chúng sẽ chia hết cho6
Ta thay 1 so tu nhien khi chia cho 6 co kha nang du 0;1;2;3;4;5
Co 6 kn du ma co 7 so => theo nguyen li direchlet co it nhat 2 so co cung so du
Khi do hieu cua chung se chia het cho 6
Điều kiện của các số chia hết cho 5 :
tận cùng là 0 hoặc 5
mà đâu phải lúc nào trong 6 số tự nhiên bất kì cũng có 1 số tận cùng la 0 ; 1 số tận cùng là 5
ví dụ :
10 ; 11 ; 12 ; 13 ; 14 ; 15 ; 16 ( đúng )
12 ; 13 ; 14 ; 15 ; 16 ; 17 ; 18 ( sai )
vậy thì điều kiện trên có thể thực hiện trong 1 số trường hợp .
Khi chia 1 số tự nhiên cho 5, số dư có thể là 0; 1; 2; 3; 4
=> Khi chia 6 số tự nhiên bất kì cho 5, số dư bằng1 trong 5 số 0; 1; 2; 3; 4.
=> Chắc chắn có 2 trong 6 số đó chia cho 5 có cùng số dư
=> Hiệu của chúng chia hết cho 5
Vậy...