Chứng minh rằng trong 3 số tự nhiên bất kì, thế nào cũng phải có hai số mà tổng của chúng chi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2017

Gọi 3 số TN lần lượt là a; a+1; a+2
Ta giả sử a chia 2 dư 1; a+1 chia 2 dư 0; a+2 chia 2 dư 1
Vậy a+a+2 chia 2 dư 0. Vậy chắc chắn 3 số TN bất kì sẽ có 2 số mà tổng của chúng chia hết cho 2.

3 tháng 10 2018

Gọi 3 số TN lần lượt là a; a+1; a+2 Ta giả sử a chia 2 dư 1; a+1 chia 2 dư 0; a+2 chia 2 dư 1 Vậy a+a+2 chia 2 dư 0. Vậy chắc chắn 3 số TN bất kì sẽ có 2 số mà tổng của chúng chia hết cho 2

23 tháng 7 2016

Gọi 3 số đó lần lượt là 2K;2K+1 và 2K+2

Theo đề bài ra ta có thì phải chứng minh trong 3 STN liên tiếp phải có tổng 2 số tự nhiên bất kì chia hết cho 2

Vậy ta có 3 TH là 2K+(2K+2) và 2K+2K+1 và (2K+2)+(2K+1)

Xét TH1: 2K+(2K+2)

Ta có: 2K+(2K+2)= (2K+2K)+2 =4K+2

Vì 4 chia hết cho và 2 chia hết cho 2  => 4K+2 chia hết cho 2

Xét TH2: 2K+(2K+1)

Ta có: 2K+(2K+1)= (2K+2K)+1= 4K+1

Vì 4 chia hết cho 2 => 4K chia hết cho 2 nhưng 1 không chia hết cho 2  

=> 4K+1 không chia hết cho 2

Xét TH3:  (2K+2)+(2K+1)

Ta có:  (2K+2)+(2K+1)= (2K+2K)+(1+2)= 4K+3

Vì 4 chia hết cho 2 => 4K chia hết cho 2 nhưng 3 không chia hết cho 2

=> 4K+3 không chia hết cho 2

Từ 3 TH trên => trong 3 số tự nhiên bất kỳ, bao giờ cũng có thể tìm được 2 số sao cho tổng của chúng chia hết cho 2.

Giúp mk nha

23 tháng 10 2014

Giả sử 6 số đó tồn tại 1 cặp có cùng tận cùng (Ví dụ 1236, 26), vậy hiệu chia hết cho 5. Thỏa mãn

Giả sử không có cặp số nào cùng tận cùng, vậy các chữ số tận cùng có thể là: 1, 2, 3, 4, 6, 7, 8, 9

Các cặp có hiệu chia hết cho 5 là: 6 - 1, 7 - 2, 8 -3, 9 - 4, nếu bỏ đi 2 số bất kỳ vẫn tồn tại 2 cặp có hiệu chia hết cho 5. CM xong!

24 tháng 11 2018

Đề bài là 2011 chính xác hơn ( tất nhiên 2001 vẫn đúng, nhưng 2011 sẽ là số sát với lời giải hơn).

Ta làm như sau: Một số tự nhiên khi chia 2011 sẽ có thể có 2011 số dư 0;1;2;...;2010.

Chia các số dư này thành các nhóm 0, (1;2010), (2;2009),....,(1005;1006).

Có 1006 nhóm, mà có 1007 số nên theo nguyên lý Đirichle sẽ có 2 số ở cùng 1 nhóm. 2 số này sẽ có tổng hoặc hiệu chia hết cho 2011

7 tháng 7 2017

Đề bài là 2011 chính xác hơn ( tất nhiên 2001 vẫn đúng, nhưng 2011 sẽ là số sát với lời giải hơn). Ta làm như sau: Một số tự nhiên khi chia 2011 sẽ có thể có 2011 số dư 0;1;2;...;2010. Chia các số dư này thành các nhóm 0, (1;2010), (2;2009),....,(1005;1006). Có 1006 nhóm, mà có 1007 số nên theo nguyên lý Đirichle sẽ có 2 số ở cùng 1 nhóm. 2 số này sẽ có tổng hoặc hiệu chia hết cho 2011