K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2017

\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\)

\(S=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(S=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)

\(S=\frac{1}{2}.\frac{2016}{2017}\)

\(S=\frac{1008}{2017}< \frac{1}{2}\)

11 tháng 5 2017

\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\)

\(2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2015.2017}\)

\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\)

\(2S=1-\frac{1}{2017}< 1\)

=> 2S < 1 

=> S < \(\frac{1}{2}\)(đpcm)

2016/2017 nhé 

k cho mình nha

28 tháng 4 2017

cảm ơn bạn

24 tháng 4 2017

Ta có:

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{100}{101}< 1\)

Vậy \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}< 1\)

24 tháng 4 2017

Đặt biểu thức là A 

Ta có A = (3-1)1x3 + (5-3)/3x5+..........+(101-99)/101x99

            =3/1x3 - 1/1*3 + 5/3x5 - 3/3x5 + ...........+ 101/99x101 - 99/101x99

            = 1- 1/3 +1/3 -1/5 +............+ 1/99 - 1/101

              = 1 -1/101 < 1 (Điều phải chứng minh)

17 tháng 1 2016

ta có : 2S=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

          2S=\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

          2S=\(\frac{1}{1}-\frac{1}{101}\)

      2S+\(\frac{1}{101}\)\(\frac{1}{1}-\frac{1}{101}+\frac{1}{101}\)

      2S+\(\frac{1}{101}\)=1

ok

19 tháng 8 2023

a)\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(1-\dfrac{1}{101}\)

=\(\dfrac{100}{101}\) 

 

 

19 tháng 8 2023

\(\dfrac{5}{1.3}+\dfrac{5}{3.5}+\dfrac{5}{5.7}+...+\dfrac{5}{99.101}\)

=\(\dfrac{5}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99+101}\right)\)

=\(\dfrac{5}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\) 

=\(\dfrac{5}{2}.\left(1-\dfrac{1}{101}\right)\)

\(\dfrac{5}{2}-\dfrac{100}{101}\)

\(\dfrac{305}{202}\)

27 tháng 1 2023

`1/[1xx3]+1/[3xx5]+1/[5xx7]+...+1/[17xx19]`

`=1/2xx(2/[1xx3]+2/[3xx5]+....+2/[17xx19])`

`=1/2xx(1-1/3+1/3-1/5+....+1/17-1/19)`

`=1/2xx(1-1/19)`

`=1/2xx18/19`

`=9/19`

5 tháng 3 2019

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{1}{2}.\frac{100}{101}\)

\(=\frac{50}{101}\)

5 tháng 3 2019

\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{99\cdot101}\)

\(=2\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{99\cdot101}\right)\)

\(=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{99\cdot101}\)

\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)

\(=\frac{1}{1}-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)

27 tháng 2 2017

\(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)y=\frac{2}{3}\)

=> \(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)y=\frac{2}{3}\)

=> \(\frac{1}{2}\left(1-\frac{1}{11}\right)y=\frac{2}{3}\)

=> \(\frac{1}{2}.\frac{10}{11}y=\frac{2}{3}\)

=> \(\frac{5}{11}y=\frac{2}{3}\)

=>y = \(\frac{2}{3}:\frac{5}{11}\)

=> y = \(\frac{22}{15}\)

3 tháng 4 2021

cho mk cái lời giải thích chỗ nhân 1/2 ý mk ko hiểu mong bn thông cảm