Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}+\frac{1}{y}=2-\frac{1}{z}\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}=4+\frac{1}{z^2}-\frac{4}{z}\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}=-\frac{4}{z}\) \(\Rightarrow\frac{1}{z}=-\frac{1}{4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}-\frac{1}{4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)=2\Rightarrow\frac{1}{4x^2}-\frac{1}{x}+1+\frac{1}{4y^2}-\frac{1}{y}+1=0\)
\(\Rightarrow\left(\frac{1}{2x}-1\right)^2+\left(\frac{1}{2y}-1\right)^2=0\Rightarrow\left\{{}\begin{matrix}\frac{1}{2x}-1=0\\\frac{1}{2y}-1=0\end{matrix}\right.\)
\(\Rightarrow x=y=\frac{1}{2}\Rightarrow\frac{1}{z}=2-\left(\frac{1}{x}+\frac{1}{y}\right)=-2\Rightarrow z=-\frac{1}{2}\)
\(\Rightarrow P=\left(\frac{1}{2}+1-\frac{1}{2}\right)^{2018}=1^{2018}=1\)
xem đi Đề thi vào THPT Chuyên tỉnh Nam Định năm học 2016-2017 - Tài liệu - Đề thi - Diễn đàn Toán học
Cái này đề chuyên PTTH, khó à nghen! Đọc link của bạn Thắng nhưng không thấy có lời giải, mạo muội post bài giải của mình nhờ các bạn góp ý giùm!
\(x^5+8y^3+7z^2=0\)(1)
Gán \(x=N^{6i};y=-N^{10i};z=N^{15i}\mid i\in N^+;N\in N^+\)vào vế trái của (1) ta được.
\(\left(N^{6i}\right)^5+8\left(-N^{10i}\right)^3+7\left(N^{15i}\right)^2=N^{30i}-8N^{30i}+7N^{30i}=0\)
Vậy, \(x=N^{6i};y=-N^{10i};z=N^{15i}\mid i\in N^+;N\in N^+\)x,y,x nguyên khác 0 là 1 họ nghiệm của (1).
Mà có vô số i thuộc N*; N thuộc N* nên có vô số số nguyên x,y,z khác 0 thỏa mãn \(x^5+8y^3+7z^2=0\)(ĐPCM)
Sử dụng phương pháp lùi vô hạn, chỉ việc nhân 2 vế của pt với 1 số nguyên có mũ là bội chung nhỏ nhất của số mũ các ẩn:
Gọi \(k\ne0\) là số nguyên bất kì, ta có:
\(x^5+8y^3+7z^3=0\Leftrightarrow k^{15}\left(x^5+8y^3+7z^3\right)=0\)
\(\Leftrightarrow k^{15}.x^5+8k^{15}y^3+7k^{15}z^3=0\)
\(\Leftrightarrow\left(k^3x\right)^5+8\left(k^5y\right)^3+7\left(k^5z\right)^3=0\)
Như vậy, với mỗi bộ số nguyên \(\left(x_0;y_0;z_0\right)\) bất kì thỏa mãn điều kiện đề bài thì bộ số nguyên \(\left(x_k;y_k;z_k\right)=\left(k^3.x_0;k^5y_0;k^5z_0\right)\) với \(k\) là số nguyên khác 0 bất kì cũng thỏa mãn điều kiện đề bài
\(\Rightarrow\) Có vô hạn bộ số nguyên thỏa mãn
Ví dụ, ta thấy \(\left(1;-1;1\right)\) là một bộ số nguyên thỏa mãn
Như vậy, mọi bộ số nguyên có dạng \(\left(k^3;-k^5;k^5\right)\) cũng thỏa mãn.