\(\left(1999^k-1\right)\)  chia hết cho 104...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2015

Xét dãy số gồm 104 số :  1991; 1992; 1993; ...; 199104

Chia các số trong dãy cho 104 . Các số dư có thể là 1;2;3;...;103. (Số dư khác 0 vì các số trong dãy đều lẻ mà 104 là số chẵn )

=> Có ít nhất hai số trong dãy có cùng số dư

Giả sử hai số đó là: 199m; 199(1 <m; n <104 và m > n)

=> 199- 199n chia hết cho 104

=> 199n.(199m-n - 1) chia hết cho 104

Mà 199n không chia hết cho 104 Nên 199m-n - 1 chia hết cho 104

Đặt k = m - n => 199- 1 chia hết cho 104

Vậy ....

 

 

bài làm

Xét dãy số gồm 104 số :  1991; 1992; 1993; ...; 199104

Chia các số trong dãy cho 104 . Các số dư có thể là 1;2;3;...;103. (Số dư khác 0 vì các số trong dãy đều lẻ mà 104 là số chẵn )

=> Có ít nhất hai số trong dãy có cùng số dư

Giả sử hai số đó là: 199m; 199(1 <m; n <104 và m > n)

=> 199- 199n chia hết cho 104

=> 199n.(199m-n - 1) chia hết cho 104

Mà 199n không chia hết cho 104 Nên 199m-n - 1 chia hết cho 104

Đặt k = m - n => 199- 1 chia hết cho 104

Đáp số:...........

hok tốt

20 tháng 12 2015

Ta đặt dãy số: 1999^1, 199^2 ,..., 1999^104

Ta lấy tất cả các số trên chia cho 104 sẽ thấy có ít nhất 103 số dư

1,2,3....,103 ( sẽ dư 0 vì 1999 và 104 nguyên tố cùng nhau nên 1999mũ bao nhiêu cũng chia hết cho 104)

Mà dãy số trên có 104 => sẽ có ít nhất 2 số cùng dư 

Gọi 2 số đó là 199^a và 199^b ( a > b)

Vì 1999^ a và 199^b chia hết cho 104 có cùng số dư nên 199^a - 199^b chia hết cho 104

=> 199^bx ( 199^ a-b -1)

mà ước chung lớn nhất ( 199^b,104)=1 nên 199^ a-b-1 chia hết cho 104

Vậy với k= a-b thfi tồn tại 199k -1 chai hết cho 104

 

24 tháng 10 2020

Ta có (ak+bk)\(⋮\)(a+b) với k = 2t+1, t\(\in\)N, a2+b2\(\ne\)0

A=1k+2k+...+(n-1)k+n; 2B=2(1+2+...+n)=n(n+1)

2A=[(1k+nk)+(2k+(n-1)k+... ]\(⋮\)(n+1)

2A=2[(1k+(n-1)k)+(2k+(n-2)k)+...+nk ] \(⋮\)n

Vậy A \(⋮\)B

3 tháng 11 2017

Thử x=0

=>0 chia hết 104

avt770595_60by60.jpg
  • pham trung thanh

tl đoàng hoàng nha

27 tháng 5 2015

Ta đặt dãy số:

1999^1;1999^2;......;1999^104

Ta lấy tất cả các số trên chia cho 104, ta sẽ có ít nhất103 số dư

1;2;3;....;103( sẽ ko dư 0 vì 1999 và 104 nguyên tố cùng nhau nên 1999 mũ bao nhiêu cũng ko chia hết cho104 )

Mà dãy số trên có 104 số nên sẽ có ít nhất 2 số có cùng số dư

Gọi 2 số đó là 1999^a và 1999^b (a>b)

vì 1999^a và 1999^b chia cho 104 có cùng số dư nên 1999^a - 1999^b chia hết cho 104

1999^a - 1999^b chia hết cho 104

=> 1999^bx(1999^a-b -1)

mà UCLL(1999^b;104)=1 nên 1999^a-b -1 sẽ chia hết cho 104

vậy với k=a-b thì tôn tại 1999^k -1 chia hết cho 104

5 tháng 1 2020

ta có dãy số 

(k+1)!+2+(k+1)!+3+..........+(k+1)!+(k+1)

dãy số trên có k số hạng

xét số hạng bất kì (k+1)!+m(2<m<k+1)

ta có(k+1)!chia hết cho m và m chia hết cho m 

suy ta (k+1)!+m là hs

3 tháng 1 2017

Ta có : a2 + 8a + 7 = ( a2 + 2a + 1 )  + ( 6a + 6 )

= [ a2 + a + a + 1 ] + ( 6a + 6 )

= [ a( a + 1 ) + ( a + 1 ) ] + 6( a + 1 )

= ( a + 1 ) ( a + 1 ) + 6 ( a + 1 )

= ( a + 1 ) [ ( a + 1 ) + 6 ]

= ( a + 1 ) ( a + 7 )

Vì a + 1 chia hết cho a + 1 => ( a + 1 ) ( a + 7 ) chia hết cho a + 1 

=> a2 + 8a + 7 chia hết cho a + 1  ( đpcm )

3 tháng 1 2017

Theo bài ra ta có : [a2+8a+7] chia hết cho [a+1] =>[a2+8a+7]=[2a+8a+7]=[10a+7] chia hết cho 10[a+1]                                                         =>10[a+1] - [10a+7] chia hết cho a+1                                                                                                                                                 =>10a+10-10a-7 chia hết cho a+1                                                                                                                                                       =>3 chia hết cho a+1                                                                                                                                                                         =>a+1 thuộc Ư(3)={1;3}                                                                                                                                                                     => Ta có : a+1 = 1 =>a+0     ; a+1=3 =>a=2         (nhớ xuống dòng bạn nhé)  Vậy [a2+8a+7] chia hết cho [a+1]