Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với mọi n là số lẻ hoặc số chẵn thì \(A=\left(n+6\right)\left(n+7\right)\) luôn luôn là số chẵn . Do đó \(A⋮2\)với mọi \(n\in Z\)
b) \(B=n\left(n+1\right)+3\)
Vì \(n\left(n+1\right)\)là tích của hai số nguyên liên tiếp nên là số chẵn , do đó \(n\left(n+1\right)⋮2\), nhưng 3 không chia hết cho 2
\(\Rightarrow\)B không chia hết cho 2 với mọi \(n\in Z\)
Nếu n là số chẵn thì (n + 6) chia hết cho 2
=> (n + 6)(n + 7) chia hết cho 2
Nếu n là số lẻ thì (n + 7) chia hết cho 2
=> (n + 6)(n + 7) chia hết cho 2
Vậy với mọi n nguye thì (n + 6)(n + 7) đều chia hết cho 2
a) Nếu n chẵn thì n=2k
( 2k + 10) x ( 2k + 15) = 2k(2k+15) + 10(2k+15) = 2(k+5)(2k+15)
=> \(2\left(k+5\right)\left(2k+15\right)⋮2\)
Nếu n lẻ thì n = 2k+1
( 2k + 1 + 10) x ( 2k + 1 + 15 ) = 2(x+8)(2x+11) \(⋮\)2
Suy ra ( n + 10) x ( n +15) luôn luôn chia hết cho 2
a) Ta xét các trường hợp:
+) Với n = 3k \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=\left(3k-1\right)\left(3k+2\right)+12\)
Ta thấy (3k - 1)(3k + 2) không chia hết cho 3, 12 chia hết cho 3 nên (3k - 1)(3k + 2) + 12 không chia hết cho 3 hay (3k - 1)(3k + 2) + 12 không chia hết cho 9.
+) Với n = 3k + 1 \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=3k\left(3k+3\right)+12=9k\left(k+1\right)+12\)
Ta thấy \(9k\left(k+1\right)⋮9;12⋮̸9\Rightarrow9k\left(k+1\right)+12⋮̸9\)
+) Với n = 3k + 2 \(\left(k\in Z\right)\), ta có: \(\left(n-1\right)\left(n+2\right)+12=\left(3k+1\right)\left(3k+4\right)+12\)
Ta thấy (3k + 1)(3k + 4) không chia hết cho 3, 12 chia hết cho 3 nên (3k + 1)(3k + 4) + 12 không chia hết cho 3 hay (3k + 1)(3k + 4) + 12 không chia hết cho 9.
b) Tương tự bài trên.