\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{25}>75\)

Ai giúp mình...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2018

Ta có :

\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

.........................................

\(\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+..........+\dfrac{1}{\sqrt{100}}>\dfrac{1}{10}+\dfrac{1}{10}+....+\dfrac{1}{10}=\dfrac{1}{10}.100=10\left(đpcm\right)\)

30 tháng 10 2018

Ta có:
1/√1 > 1/10
1/√2 > 1/10
1/√3 > 1/10
....................
1/√99 > 1/10
1/√100 = 1/10
Cộng từng vế ta có:
1/√1 + 1/√2 + 1/√3 + ... + 1/√100 >100.1/0 = 10 (Đpcm)

1 tháng 4 2020

Lớp 7 vừa học hằng đẳng thức, chú ý hằng đẳng thức sau: (a - b)(a + b) = a2 - b2.

Bạn cần khử căn dưới mẫu và cộng tổng bên trái, muốn vậy bạn phải đánh giá từng phân số bằng cách làm trội nó

Sử dụng đánh giá sau: \(\frac{1}{\sqrt{k}}>\frac{1}{\sqrt{k}+\sqrt{k-1}}=\sqrt{k}-\sqrt{k-1}\)

1 tháng 4 2020

Ta có:

\(\frac{1}{\sqrt{1}}>\frac{10}{\sqrt{100}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}};...;\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)

\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=10\)(đpcm)

20 tháng 12 2015

Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{10}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{10}\)

.......

\(\frac{1}{\sqrt{100}}>\frac{1}{10}\)

=> \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{10}+...+\frac{1}{10}\)(có 100 số hạng 1/10) \(=\frac{100}{10}=10\)

=> Y>10

20 tháng 12 2015

\(y>\frac{1}{\sqrt{100}}.10=10\)

27 tháng 5 2017

mk không biết mình mới lớp 5

5 tháng 8 2016

Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{n}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{n}}....;\frac{1}{\sqrt{n}}=\frac{1}{\sqrt{n}}\)

=>\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}>\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+...+\frac{1}{\sqrt{n}}\)

\(=n.\frac{1}{\sqrt{n}}=\sqrt{n}\left(dpcm\right)\)

14 tháng 10 2015

1) \(\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)

=> \(\frac{1}{\sqrt{1}}+\frac{2}{\sqrt{2}}+....+\frac{100}{\sqrt{100}}>\frac{100}{\sqrt{100}}=10\)

2) Xét hiệu: \(\frac{a+b}{2}-\sqrt{ab}=\frac{a+b-2\sqrt{ab}}{2}=\frac{a-\sqrt{ab}-\sqrt{ab}+b}{2}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\ge0\)

=> \(\frac{a+b}{2}\ge\sqrt{ab}\) 

Vậy....

 

14 tháng 10 2015

a) đặt A=vế trái ,sau khi rút gọc tử và mẫu của từng số hạng ta đc

A=\(\sqrt{1}\)+\(\sqrt{2}\)+\(\sqrt{3}\)+...+\(\sqrt{100}\)

vì \(\sqrt{100}\)=10

\(\sqrt{1}\)>0

\(\sqrt{2}\)>0

...

\(\sqrt{99}\)>0

cộng lại ta sẽ đc A>0

b) 

(a-b)2>=0

=>a2+b2>=2ab

=>a2+2ab+b2>=2ab+2ab

=>(a+b)2>=4ab

=>a+b>=2.\(\sqrt{ab}\) với mọi a,b>0

=>dpcm (chia cả 2 vế cho 2)

 

16 tháng 12 2017

b, \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)

Ta có: \(1< 100\Rightarrow\sqrt{1}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{1}}< \frac{1}{\sqrt{100}}\)

           \(2< 100\Rightarrow\sqrt{2}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{2}}< \frac{1}{\sqrt{100}}\)

          \(3< 100\Rightarrow\sqrt{3}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{3}}< \frac{1}{\sqrt{100}}\)

           ______________________________________________

          \(100=100\Rightarrow\sqrt{100}=\sqrt{100}\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\left(1\right)\)

Từ (1) suy ra:

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\left(100sh\frac{1}{\sqrt{100}}\right)\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}.100\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{10}{\sqrt{100}}\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>10\left(ĐPCM\right)\)