Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Một đa thức ( khác đa thức 0) có thể có một nghiệm, hai
nghiệm, hoặc không có nghiệm.
- Người ta đã chứng minh được rằng số nghiệm của một
đa thức (khác đa thức 0) không vượt quá bậc của nó.
Chẳng hạn: Đa thức bậc nhất chỉ có một nghiệm, đa thức
bậc hai có không quá hai nghiệm,
Giả sử n = a. b (1 < a, b < n )
Nếu cả a và b đều lớn hơn căn bậc 2 của n thì n = ab > n (vô lý) như vậy phải có một thừa số không vượt quá căn bậc 2 của n hay có ước nguyên tố không vượt quá căn bậc 2 của n
Vì mk ko biết viết dấu căn bậc nên mk thay bằng chữ, mong bạn thông cảm nha !
\(a.\)Ta có:\(\frac{x}{y}+\frac{y}{x}\ge2\)
\(AM-GM:\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\left(đpcm\right)\)
\(b.\)Nếu x,y dương thì Áp dụng BĐT Cô-si ta có:\(\frac{3x}{y}+\frac{3y}{x}\ge2\sqrt{\frac{3x}{y}.\frac{3y}{x}}=6\)hay\(\frac{3x}{y}+\frac{3y}{x}\ge6\left(đpcm\right)\)
Nếu x,y âm ta có:\(\frac{3x}{y}+\frac{3y}{x}=\frac{3x^2}{xy}+\frac{3y^2}{xy}\ge2\sqrt{\frac{3x^2}{xy}.\frac{3y^2}{xy}}=6\left(đpcm\right)\)
Lời giải:
Không mất tổng quát, giả sử n chẵn.
Khi đó các hệ số bậc chẵn là: \(a_n, a_{n-2},...,a_0\), và các hệ số bậc lẻ là \(a_{n-1}, a_{n-3},...,a_1\). Theo bài ra ta có:
\(a_n+a_{n-2}+...+a_0=a_{n-1}+a_{n-3}+...+a_1(*)\)
Ta thấy \((-1)^k=\left\{\begin{matrix} \text{1 nếu k chẵn}\\ \text{-1 nếu k lẻ}\end{matrix}\right.\). Do đó:
\(F(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0x^0\)
\(\Rightarrow F(-1)=a_n(-1)^n+a_{n-1}(-1)^{n-1}+...+a_1(-1)+a_0\)
\(=a_n+(-1)a_{n-1}+a_{n-2}+(-1)a_{n-3}+....+(-1)a_1+a_0\)
\(=(a_n+a_{n-2}+...+a_0)-(a_{n-1}+a_{n-3}+...+a_1)\)
\(=0\) (do $(*)$)
Vậy \(F(-1)=0\), tức là $x=-1$ là nghiệm của đa thức $F(x)$
` 1x + 3x^2 =0`
` x( 3x + 1) = 0`
\(=>\left[{}\begin{matrix}x=0\\3x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{3}\end{matrix}\right.\)
Vậy.....