\(S=\dfrac{1}{19}+\dfrac{1}{19^2}+\dfrac{1}{19^3}+...+\dfrac{1}{19^{10}}< \d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2021

`S=1/19+1/19^2+1/19^3+........+1/19^20`

`=>19S=1+1/19+1/19^2+.....+1/19^19`

`=>19S-S=18S=1-1/19^20<1`

`=>S<1/18(đpcm)`

Giải:

S=\(\dfrac{1}{19}+\dfrac{1}{19^2}+\dfrac{1}{19^3}+...+\dfrac{1}{19^{10}}\) 

19S=\(1+\dfrac{1}{19}+\dfrac{1}{19^2}+...+\dfrac{1}{19^9}\) 

19S-S=\(\left(1+\dfrac{1}{19}+\dfrac{1}{19^2}+...+\dfrac{1}{19^9}\right)-\left(\dfrac{1}{19}+\dfrac{1}{19^2}+\dfrac{1}{19^3}+...+\dfrac{1}{19^{10}}\right)\) 

18S=1-\(\dfrac{1}{19^{10}}\) 

S=(1-\(\dfrac{1}{19^{10}}\) ):18

S=\(1:18-\dfrac{1}{19^{10}}:18\) 

S=\(\dfrac{1}{18}-\dfrac{1}{19^{10}.18}\) 

⇒S<\(\dfrac{1}{18}\) (đpcm)

Chúc bạn học tốt!

3 tháng 5 2017

Ta có: \(\dfrac{1}{19}+\dfrac{2}{18}+...+\dfrac{19}{1}=\left(\dfrac{1}{19}+1\right)+\left(\dfrac{2}{18}+1\right)+...+1\)

\(=\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}+\dfrac{20}{20}=20\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}\right)\)

Thế lại bài toán ta được

\(\dfrac{\dfrac{1}{19}+\dfrac{2}{18}+...+\dfrac{19}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}=\dfrac{20\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}=20\)

3 tháng 5 2017

Ta có

\(\dfrac{1}{19}+\dfrac{2}{18}+\dfrac{3}{17}+...+\dfrac{19}{1}\\ =\dfrac{1}{19}+1+\dfrac{2}{18}+1+\dfrac{3}{17}+1+...+\dfrac{19}{1}+1-19\\ =\dfrac{20}{19}+\dfrac{20}{18}+\dfrac{20}{17}+...+\dfrac{20}{1}-19\\ =\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}+20-19\\ =\dfrac{20}{19}+\dfrac{20}{18}+\dfrac{20}{17}+...+\dfrac{20}{2}+1+19-19\\ =\dfrac{20}{20}+\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}\\ =20\cdot\left(\dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{2}\right)\)

Thế vào ta có:

\(\dfrac{\dfrac{1}{19}+\dfrac{2}{18}+\dfrac{3}{17}+...+\dfrac{19}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\\ =\dfrac{20\cdot\left(\dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{2}\right)}{\dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{2}}\\ =20\)

12 tháng 7 2017

Nếu:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+n}{b+n}< 1\left(n\in N\right)\)

\(B=\dfrac{10^{20}+1}{10^{21}+1}< 1\)

\(B< \dfrac{10^{20}+1+9}{10^{21}+1+9}\Rightarrow B< \dfrac{10^{20}+10}{10^{21}+10}\Rightarrow B< \dfrac{10\left(10^{19}+1\right)}{10\left(10^{20}+1\right)}\Rightarrow B< \dfrac{10^{19}+1}{10^{20}+1}=A\)\(\Rightarrow B< A\)

20 tháng 3 2017

— S = 1/4 + 2/4 +...+10/4 (1)

= 1 + 1/4 + 2/4 +...+ 9/4 (2)

=> Lấy (2) trừ đi (1) ta được:

1 — 10/4 = —6/4

Vì 14 = 14/1 = 84/6 mà —6/4 < 84/6

Do đó S < 14

21 tháng 3 2017

Cậu có có thể giúp mk 2 câu tiếp theo đc ko

27 tháng 3 2017

Bài 2:

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2016}{2017}\)

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)

\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)

\(\Leftrightarrow\dfrac{1}{x+1}=1-\dfrac{2016}{2017}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2017}\)

\(\Leftrightarrow x+1=2017\Leftrightarrow x=2016\)

Vậy \(x=2016\)

25 tháng 12 2018

2.x=2016

4 tháng 5 2017

\(A=\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{20}\)

\(>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}=\dfrac{10}{20}=\dfrac{1}{2}\)

Vậy \(A>\dfrac{1}{2}\)

8 tháng 5 2017

Câu a :

Chưa nghĩ ra! Sorry nhé!!

Câu b :

Câu hỏi của Trần Thùy Linh - Toán lớp 6 | Học trực tuyến

Câu c :

Câu hỏi của Trần Thùy Linh - Toán lớp 6 | Học trực tuyến

Vào link đó mà xem, t ngại chép lại

11 tháng 1 2018

\(A=\dfrac{-10}{3}+\dfrac{19}{6}\cdot\dfrac{7}{5}-\dfrac{19}{3}\cdot\dfrac{1}{10}+\dfrac{19}{10}\cdot\dfrac{4}{3}\)

\(=\dfrac{-10}{3}+\dfrac{19}{3}\cdot\dfrac{7}{10}-\dfrac{19}{3}\cdot\dfrac{1}{10}+\dfrac{19}{3}\cdot\dfrac{4}{10}\)

\(=\dfrac{-10}{3}+\dfrac{19}{3}\cdot\left(\dfrac{7}{10}-\dfrac{1}{10}+\dfrac{4}{10}\right)\)

\(=\dfrac{-10}{3}+\dfrac{19}{3}\cdot\dfrac{10}{10}=\dfrac{-10}{3}+\dfrac{19}{3}\)

\(=\dfrac{9}{3}=3\)

10 tháng 3 2018

19A= \(\dfrac{19^{19}+19}{19^{19}+1}=\dfrac{19^{19}+1+18}{19^{19}+1}=1+\dfrac{18}{19^{19}+1}\)

19B = \(\dfrac{19^{18}+19}{19^{18}+1}=\dfrac{19^{18}+1+18}{19^{18}+1}=1+\dfrac{18}{19^{18}+1}\)

Ta có: 19A<19B

=> A<B