![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
mo di em a.cach lam ma ngu thi tick bat cong thoi.ngo nhu bu
S=1.2 + 2.3 + ..... + n.(n+1)
3S = 1.2.3 + 2.3.3 + ..... + n.(n+1).3
3S = 1.2.3 + 2.3.(4-1) + ...... + n.(n + 1).[(n + 2) - (n - 1)]
3S = 1.2.3 + 2.3.4 - 1.2.3 + .... + n.(n + 1).(n + 2) - (n - 1).n.(n + 1)
3S = (1.2.3 - 1.2.3) + (2.3.4 - 2.3.4) +...... + [(n-1)n(n + 1) - (n - 1).n.(n + 1)] + n.(n + 1)(n + 2)
VẬy 3S = n.(n + 1)(n + 2)
Vậy S = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1 và 2 đều dùng chung một cách giải .
Tổng của các phân số có tử số là một luôn là một phân số bé hơn một .
Vậy chúng đều không phải số tự nhiên .
Nguyễn Ngọc Đạt F12 ns vậy cũng nói, tổng các số bé hơn 1 là bé hơn 1 ak ??? 0.5<1 ; 0.75 , 1 mà 0.5 + 0.75 >1 đó
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
1/2 + 1/3 + 1/4 + ... + 1/15 + 1/16 = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) + (1/12 + 1/13 + 1/14) + (1/15 + 1/16)
Vì 1/6 + 1/7 + 1/8 < 3x 1/6 = 1/2
1/9 + 1/10 + 1/11 <3x1/9 = 1/3
1/12 + 1/13 +1/14 < 3x1/12 = 1/4
1/15 + 1/16 < 3 x 1/15 = 1/5
Nên A < 2 x (1/2 + 1/3 + 1/4 + 1/5) < 2 x (1/2 + 1/2 + 1/4 + 1/4) =3 (1)
Lập luận tương tự có:
A = ( 1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) > (1/2 + 1/3 + 1/4) + 4 x 1/8 + 4 x 1/ 12 + 4 x 1/16
Hay A > 2 x (1/2 + 1/3 + 1/4) > 2 x (1/2 + 1/4 + 1/4) = 2 (2)
Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...+n}\)
\(=1+\dfrac{1}{2\cdot\dfrac{3}{2}}+\dfrac{1}{3\cdot\dfrac{4}{2}}+...+\dfrac{1}{\dfrac{n\left(n+1\right)}{2}}\)
\(=1+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{n\left(n+1\right)}\)
\(=1+2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)
\(=2-\dfrac{2}{n+1}\) ko là số tự nhiên
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
1/2 + 1/3 + 1/4 + ... + 1/15 + 1/16 = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) + (1/12 + 1/13 + 1/14) + (1/15 + 1/16)
Vì 1/6 + 1/7 + 1/8 < 3x 1/6 = 1/2
1/9 + 1/10 + 1/11 <3x1/9 = 1/3
1/12 + 1/13 +1/14 < 3x1/12 = 1/4
1/15 + 1/16 < 3 x 1/15 = 1/5
Nên A < 2 x (1/2 + 1/3 + 1/4 + 1/5) < 2 x (1/2 + 1/2 + 1/4 + 1/4) =3 (1)
Lập luận tương tự có:
A = ( 1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) > (1/2 + 1/3 + 1/4) + 4 x 1/8 + 4 x 1/ 12 + 4 x 1/16
Hay A > 2 x (1/2 + 1/3 + 1/4) > 2 x (1/2 + 1/4 + 1/4) = 2 (2)
Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.
Làm piếng viết phân số nên bạn lm đỡ nhé!!!!!!!!!!!!!!
ta có: \(\frac{1}{1.2}>0;\frac{1}{2.3}>0;...;\frac{1}{n.\left(n+1\right)}>0\)
\(\Rightarrow S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n.\left(n+1\right)}>0\)
ta có: \(S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n.\left(n+1\right)}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(S=1-\frac{1}{n+1}< 1\)
=> 0 < S < 1
=> S không phải là số tự nhiên