Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
1/2 + 1/3 + 1/4 + ... + 1/15 + 1/16 = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) + (1/12 + 1/13 + 1/14) + (1/15 + 1/16)
Vì 1/6 + 1/7 + 1/8 < 3x 1/6 = 1/2
1/9 + 1/10 + 1/11 <3x1/9 = 1/3
1/12 + 1/13 +1/14 < 3x1/12 = 1/4
1/15 + 1/16 < 3 x 1/15 = 1/5
Nên A < 2 x (1/2 + 1/3 + 1/4 + 1/5) < 2 x (1/2 + 1/2 + 1/4 + 1/4) =3 (1)
Lập luận tương tự có:
A = ( 1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) > (1/2 + 1/3 + 1/4) + 4 x 1/8 + 4 x 1/ 12 + 4 x 1/16
Hay A > 2 x (1/2 + 1/3 + 1/4) > 2 x (1/2 + 1/4 + 1/4) = 2 (2)
Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.
Không vì \(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=1\)nhưng \(\frac{1}{4}+\frac{1}{8}+\frac{1}{7}=\frac{116}{224}\)mà 1 + \(\frac{116}{224}=1\frac{116}{224}\)không phải là số tự nhiên !!! Làm theo cách khác \(\frac{116}{224}\)không phải là số tự nhiên nên S không phải là số tự nhiên
Kết luận : S không phải là số tự nhiên
bạn đã giải theo 3 hướng sau đây : Hướng 1 : Tính S = 1 201/280 Hướng 2 : Khi qui đồng mẫu số để tính S thì mẫu số chung là số chẵn. Với mẫu số chung này thì 1/2 ; 1/3 ; 1/4 ; 1/5 ; 1/6 ; 1/7 sẽ trở thành các phân số mà tử số là số chẵn, chỉ có 1/8 là trở thành phân số mà tử số là số lẻ. Vậy S là một phân số có tử số là số lẻ và mẫu số là số chẵn nên S không phải là số tự nhiên. Hướng 3 : Chứng minh 5/4 < S < 2 Thật vậy 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 > 6 x 1/8 = 3/4 nên S > 3/4 + 1/2 = 5/4 Mặt khác : 1/4 + 1/5 + 1/6 + 1/7 < 4 x 1/4 = 1 nên S < 1 + 1/2 + 1/3 + 1/8 = 1 + 1/2 + 11/24 <2 Vì 5/4 < S < 2 nên S không phải là số tự nhiên.
Tính S = 1\(\frac{201}{280}\)
Khi quy đồng mẫu số để tính S thì mẫu số chung là số chẵn. Với mẫu số chung này thì. \(\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{5},\frac{1}{6},\frac{1}{7}\)sở trở thành các phân số mà tử số là số chẵn, chỉ có \(\frac{1}{8}\)là trở thành phân số mà tử số là số lẻ. Vậy S là một phân số có tử số là số lẻ và mẫu số là số chẵn nên S không phải là số tự nhiên.
Chứng minh \(\frac{5}{4}\)< S < 2
Thật vậy: \(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\)> 6 x \(\frac{1}{8}\)= \(\frac{3}{4}\)
Nên S > \(\frac{3}{4}\)\(+\frac{1}{2}\)= \(\frac{5}{4}\)
Mặt khác: \(\frac{1}{4}\)\(+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\)< 4 x \(\frac{1}{4}\)= 1
Nên S < 1 + \(\frac{1}{2}+\frac{1}{3}+\frac{1}{8}\)= 1 + \(\frac{1}{2}\)+ \(\frac{11}{24}\)< 2
Vì \(\frac{5}{4}\)< S < 2 nên S không phải là số tự nhiên
Bài 1 :
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(S=\frac{1}{1}-\frac{1}{2011}=\frac{2010}{2011}\)
Bài 2 :
\(S=\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+...+\frac{1}{58}-\frac{1}{61}\)
\(S=\frac{1}{10}-\frac{1}{61}=\frac{51}{610}\)
Bài 3 :
\(3S=\frac{3}{4\times7}+\frac{3}{7\times11}+...+\frac{3}{19\times22}\)
\(3S=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{19}-\frac{1}{22}\)
\(3S=\frac{1}{4}-\frac{1}{22}\)
\(S=\frac{18}{88}\div3=\frac{6}{88}\)
1)ta có 7 / 15 = 7x8/15x8 = 56/120 , 8/15=8x8 /15x8 = 64/ 120 , x / 40 = X x 3/40 x3 = X x 3 =120( cách làm này đưa về cùng mẫu số nha bạn)
vậy ta có 56/120<X x 3/ 120 <64/120
Dùng phương pháp thử nghiệm thì X x 3 = 60/120
Đáp án x= 6nha ( / chính là __ trong phân số)
đợi chút xem mk làm được câu 2 ko
Bài 1:
Ta thấy:
\(\frac{1}{2}>\frac{1}{6};\frac{1}{3}>\frac{1}{6};\frac{1}{4}>\frac{1}{6};\frac{1}{5}>\frac{1}{6};\frac{1}{6}=\frac{1}{6}\)
\(=>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}>\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}\)
\(=>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}>\frac{5}{6}\)
Bài 2:
Đặt \(A=\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+...+\frac{1}{1517}\)
Ta thấy \(\frac{1}{5}=\frac{1}{1.5};\frac{1}{45}=\frac{1}{5.9};\frac{1}{117}=\frac{1}{9.13}\)
Theo quy luật như vậy ta có các số tiếp theo là:
\(\frac{1}{13.17}=\frac{1}{221};\frac{1}{17.21}=\frac{1}{357};\frac{1}{21.25}=\frac{1}{525};\frac{1}{25.29}=\frac{1}{725};...\)
Ta có \(A=\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+...+\frac{1}{1517}\)
\(=>A=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{27.31}\)
\(=>4A=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{27.31}\)
\(=>4A=\frac{5-1}{1.5}+\frac{9-5}{5.9}+\frac{13-9}{9.13}+...+\frac{31-27}{27.31}\)
\(=>4A=\frac{5}{1.5}-\frac{1}{1.5}+\frac{9}{5.9}-\frac{5}{5.9}+\frac{13}{9.13}-\frac{9}{9.13}+...+\frac{31}{27.31}-\frac{27}{27.31}\)
\(=>4A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{27}-\frac{1}{31}\)
\(=>4A=1-\frac{1}{31}=\frac{30}{31}=>A=\frac{30}{31}.\frac{1}{4}=\frac{15}{62}\)
1/16+1/2=9/16 không phải là số tự nhiên
Có thể chứng minh được S>2 đó!