Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+...+\dfrac{1}{10000}\)
Ta có:
\(A=\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+...+\dfrac{1}{10000}\)
\(\Rightarrow A=\dfrac{1}{4}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)
\(\Rightarrow A< \dfrac{1}{4}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)\)
\(\Rightarrow A< \dfrac{1}{4}\left(1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(\Rightarrow A< \dfrac{1}{4}\left(1+1-\dfrac{1}{50}\right)\)
\(\Rightarrow A< \dfrac{1}{4}.\dfrac{99}{50}\)
\(\Rightarrow A< \dfrac{99}{200}< \dfrac{1}{2}\)
Vậy \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+...+\dfrac{1}{10000}< \dfrac{1}{2}\) (Đpcm)
\(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+...+\dfrac{1}{10000}=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
\(=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)< \dfrac{1}{4}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)=\dfrac{1}{4}\left(1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=\dfrac{1}{4}\left(1+1-\dfrac{1}{50}\right)=\dfrac{1}{4}\left(2-\dfrac{1}{50}\right)< \dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+...+\dfrac{1}{10000}< \dfrac{1}{2}\)
\(A=\dfrac{1}{4}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{1010^2}\right)\)
1/2^2+1/3^2+...+1/2010^2<1/1*2+1/2*3+...+1/2009*2010=1-1/2010<1
=>A<1/4
Ta có : \(\dfrac{1}{4}\)= \(\dfrac{1}{2.2}\)> \(\dfrac{1}{2.3}\)
\(\dfrac{1}{9}\)= \(\dfrac{1}{3.3}\)> \(\dfrac{1}{3.4}\)
\(\dfrac{1}{16}\)=\(\dfrac{1}{4.4}\)> \(\dfrac{1}{4.5}\)
.......
\(\dfrac{1}{9801}\)= \(\dfrac{1}{99.99}\)> \(\dfrac{1}{99.100}\)
\(\dfrac{1}{10000}\)= \(\dfrac{1}{100.100}\)> \(\dfrac{1}{100.101}\)
\(\Rightarrow\) \(\dfrac{1}{4}\)+ \(\dfrac{1}{9}\)+ \(\dfrac{1}{16}\)+ ..... + \(\dfrac{1}{9801}\)+ \(\dfrac{1}{10000}\)> \(\dfrac{1}{2.3}\)+ \(\dfrac{1}{3.4}\)+ \(\dfrac{1}{4.5}\)+...+ \(\dfrac{1}{99.100}\)+\(\dfrac{1}{100.101}\)
= \(\dfrac{3-2}{2.3}\)+ \(\dfrac{4-3}{3.4}\)+ \(\dfrac{5-4}{4.5}\) +...+ \(\dfrac{100-99}{99.100}\)+ \(\dfrac{101-100}{100.101}\)
= \(\dfrac{3}{2.3}\)- \(\dfrac{2}{2.3}\) + \(\dfrac{4}{3.4}\)-\(\dfrac{3}{3.4}\)+ \(\dfrac{5}{4.5}\)-\(\dfrac{4}{4.5}\)+...+ \(\dfrac{100}{99.100}\)- \(\dfrac{99}{99.100}\)+ \(\dfrac{101}{100.101}\)-\(\dfrac{100}{100.101}\)
= \(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+....+ \(\dfrac{1}{99}\)-\(\dfrac{1}{100}\)+\(\dfrac{1}{100}\)-\(\dfrac{1}{101}\)
= \(\dfrac{1}{2}\)- \(\dfrac{1}{101}\) ; Mà \(\dfrac{1}{2}\)- \(\dfrac{1}{101}\)= \(\dfrac{99}{202}\)< \(\dfrac{1}{2}\)
\(\Rightarrow\) \(\dfrac{1}{2}\)< \(\dfrac{1}{4}\)+ \(\dfrac{1}{9}\)+ \(\dfrac{1}{16}\)+...+ \(\dfrac{1}{9801}\)+ \(\dfrac{1}{10000}\) (1)
Giải thích các bước giải:
Đặt A= 1/4+1/16+1/36+1/64+1/100+1/144+1/196
= 1/2^2+ 1/4^2+ 1/6^2+….+ 1/16^2
= 1/2^2.( 1+ 1/2^2+ 1/3^2+…+ 1/8^2)
Ta có 1+ 1/2^2+ 1/3^2+…+ 1/8^2< 1+ 1/1.2+ 1/2.3+….7.8= 1+ 1-1/2+ 1/2- 1/3+….+ 1/7- 1/8
= 2- 1/8< 2
Nên ( 1+ 1/2^2+ 1/3^2+…+ 1/8^2)< 2
=> A< 1/2^2 nhân 2= 1/2
Vậy A< 1/2
\(S=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)\)
Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(A< \dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{50-49}{49.50}\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A< 1-\dfrac{1}{50}\Rightarrow A< 1\)
Ta có \(S=\dfrac{1}{2^2}\left(1+A\right)\)
Ta có
\(A< 1\Rightarrow1+A< 2\Rightarrow S< \dfrac{1}{2^2}.2=\dfrac{1}{2}\)
1/2^2+1/3^2+...+1/50^2<1/1*2+1/2*3*+...+1/49*50
=1/1-1/2+1/2-1/3+...+1/49-1/50<1
=>S<1+1=2
Bài này mình da làm roi dễ
S = \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+......+\dfrac{1}{10000}\)
\(\Rightarrow S=\dfrac{1}{4.1}+\dfrac{1}{4.4}+\dfrac{1}{4.9}+.....+\dfrac{1}{4.2500}\)
\(\Rightarrow S=\dfrac{1}{4.\left(1+\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{2500}\right)}< \dfrac{1}{2}\)
\(\RightarrowĐPCM\)