K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

Bạn ơi bạn bấm vào câu hỏi tương tự có đáp án đấy.

1) Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\left(m-5\right)\)

\(=\left(2m-2\right)^2-4\left(m-5\right)\)

\(=4m^2-8m+4-4m+20\)

\(=4m^2-12m+24\)

\(=4m^2-12m+9+15\)

\(=\left(2m-3\right)^2+15>0\forall m\)

Do đó, phương trình luôn có hai nghiệm phân biệt với mọi m

2) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1\cdot x_2=m-5\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1-x_2=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x_1=2m+1\\x_1-x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2m+1}{2}\\x_2=x_1-3=\dfrac{2m+1}{2}-\dfrac{6}{2}=\dfrac{2m-5}{2}\end{matrix}\right.\)

Ta có: \(x_1\cdot x_5=m-5\)

\(\Leftrightarrow\left(2m+1\right)\left(2m-5\right)=4\left(m-5\right)\)

\(\Leftrightarrow4m^2-10m+2m-5=4m-20\)

\(\Leftrightarrow4m^2-8m-5-4m+20=0\)

\(\Leftrightarrow4m^2-12m+15=0\)(vô lý)

Vậy: Không có giá trị nào của m để phương tình có hai nghiệm mà hiệu của chúng bằng 3

27 tháng 5 2018

b) Δ = m - 2 2  -4.(-m + 1) =  m 2  - 4m + 4 + 4m - 4 = m 2  ≥ 0 ∀ m

⇒ Phương trình đã cho luôn có nghiệm với mọi m

AH
Akai Haruma
Giáo viên
31 tháng 1 2023

Lời giải:

Ta có:
$\Delta=(2m+1)^2-4(m^2+m-1)=5>0$ với mọi $m\in\mathbb{R}$

Do đó pt luôn có nghiệm với mọi $m\in\mathbb{R}$

30 tháng 9 2015

+\(\Delta=\left[-\left(m+1\right)\right]^2-4.1.\left(2m-3\right)\)

\(=m^2+2m+1-8m+12=m^2-6m+13=\left(m-3\right)^2+4>0\)

\(\Delta>0\Rightarrow\text{phương trình (1) có 2 nghiệm phân biệt}\)

+x=3

PT(1) trở thành : \(3^2-\left(m+1\right).3+2m-3=0\)

\(\Leftrightarrow-3m-3+2m+6=0\)

\(\Leftrightarrow-m+3=0\Leftrightarrow m=3\text{ Vậy với x=3 thì m=3}\)

5 tháng 8 2021

a) \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\\ =m^2+6m+9-4m\\ =m^2+2m+9\\ =\left(m+1\right)^2+8>0\forall m\)

Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m.

b) Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1x_2=m\end{matrix}\right.\)

Mà \(x_1^2+x_2^2=6\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\\ \Leftrightarrow\left(m+3\right)^2-2m=6\\ \Leftrightarrow m^2+6m+9-2m=6\\ \Leftrightarrow m^2+4m+3=0\\ \Leftrightarrow\left(m+1\right)\left(m+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)

Vậy \(m\in\left\{-1;-3\right\}\) là các giá trị cần tìm.

5 tháng 8 2021

a, Ta có: \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\)

                   \(=m^2+6m+9-4m\)

                   \(=m^2+2m+9\)

                   \(=m^2+2m+1+8\)

                   \(=\left(m+1\right)^2+8\)

Lại có:  \(\left(m+1\right)^2\ge0\forall m\Rightarrow\left(m+1\right)^2+8\ge8\forall m\)

Vậy phương trình luôn có 2 nghiêm phân biệt 

b, Theo hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1+x_2=m\end{matrix}\right.\)

Theo bài ra:

 \(x_1^2+x_2^2=6\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)

\(\Leftrightarrow\left(m+3\right)^2-2m=6\)

\(\Leftrightarrow m^2+6m+9-2m=6\)

\(\Leftrightarrow m^2+6m+9-2m-6=0\)

\(\Leftrightarrow m^2+4m+3=0\)

\(\Leftrightarrow m^2+m+3m+3=0\)

\(\Leftrightarrow\left(m^2+m\right)+\left(3m+3\right)=0\)

\(\Leftrightarrow m\left(m+1\right)+3\left(m+1\right)=0\)

\(\Leftrightarrow\left(m+1\right)\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\m+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)

Vậy với m=-1 hoặc m=-3 thì phương trinh trên thỏa mãn hệ thức 

 

4 tháng 3 2022

a, Thay m = 1 ta đc

\(x^2-1=0\Leftrightarrow x=1;x=-1\)

b, \(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2-4m+4=\left(m-2\right)^2\)

Để pt có 2 nghiệm pb khi delta' > 0 

\(m-2\ne0\Leftrightarrow m\ne2\)

c, để pt có 2 nghiệm trái dấu khi \(x_1x_2=2m-3< 0\Leftrightarrow m< \dfrac{3}{2}\)

NV
4 tháng 3 2022

d. 

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=2m-3\end{matrix}\right.\)

Trừ vế cho vế:

\(\Rightarrow x_1+x_2-x_1x_2=1\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

5 tháng 7 2016

+Ta có: \(\Delta=\left(m+1\right)^2-4.\left(2m-3\right)\)

\(=m^2+2m+1-8m+12\)

\(=m^2-6m+12\)

\(=\left(m-3\right)^2+3>0\)

=>dpcm

+Thay x=3 vào phương trình x2 – (m + 1)x + 2m - 3 = 0 

ta được: 32-(m+1).3+2m-3=0

<=>9-3m-3+2m-3=0

<=>-m+3=0

<=>m=3

Vậy m=3 thì phương trình x2 – (m + 1)x + 2m - 3 = 0  có 1 nghiệm bằng 3

5 tháng 7 2016

\(x^2-\left(m+1\right)x+2m-3=0\)

+ Xét \(\Delta=\left(m+1\right)^2-4\left(2m-3\right)=m^2-6m+13=\left(m^2-6m+9\right)+4=\left(m-3\right)^2+4>0\)với mọi m thuộc tập số thực.

Vậy phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m.

+ Phương trình có nghiệm \(x=3\) , thay vào phương trình , ta được : 

\(3^2-\left(m+1\right).3+2m-3=0\Rightarrow m=3\)

Vậy m = 3