Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng các phương trình sau luôn có nghiệm: a)x^5 - 3x+3=0 b)x^5+x-1=0 c)x^4+x^3-3x^2+x+1=0
Lời giải:
a) $f(x)=x^5-3x+3$ liên tục trên $R$
$f(0)=3>0; f(-2)=-23<0\Rightarrow f(0)f(-2)<0$
Do đó pt $f(x)=0$ có ít nhất 1 nghiệm thuộc $(-2;0)$
Nghĩa là pt đã cho luôn có nghiệm.
b) $f(x)=x^5+x-1$ liên tục trên $R$
$f(0)=-1<0; f(1)=1>0\Rightarrow f(0)f(1)<0$
Do đó pt $f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(0;1)$
Hay pt đã cho luôn có nghiệm.
c) $f(x)=x^4+x^3-3x^2+x+1$ liên tục trên $R$
$f(0)=1>0; f(-1)=-3<0\Rightarrow f(0)f(-1)<0$
$\Rightarrow f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(-1;0)$
Hay pt đã cho luôn có nghiệm.
\(sin^2x+\sqrt{3}sinxcosx=1\)
\(\Leftrightarrow sin^2x+\sqrt{3}sinxcosx=sin^2x+cos^2x\)
\(\Leftrightarrow cosx\left(\sqrt{3}sinx-cosx\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}cosx=0\\\sqrt{3}sinx=cosx\end{cases}}\Leftrightarrow\orbr{\begin{cases}cosx=0\\tanx=\frac{1}{\sqrt{3}}\end{cases}}\)
Từ đây suy ra nghiệm.
\(sinx=m^2-5m+1\Leftrightarrow sinx=\left(m-1\right)^2\) (1)
Pt có nghiệm: \(\Rightarrow-1\le sinx\le1\)
\(\Rightarrow\) \(0\le\left(m-1\right)^2\le1\)
\(\Rightarrow\)\(0\le m-1\le1\Rightarrow-1\le m\le0\)
Với \(m\in\left[-1;0\right]\) thì (1) có nghiệm.
Để pt (1) không có nghiệm \(\Rightarrow m\in\left(-\infty;-1\right)\cup\left(0;+\infty\right)\)
1.
Đặt \(f\left(x\right)=\left(m^2+1\right)x^3-2m^2x^2-4x+m^2+1\)
\(f\left(x\right)\) xác định và liên tục trên R
\(f\left(x\right)\) có bậc 3 nên có tối đa 3 nghiệm (1)
\(f\left(0\right)=m^2+1>0\) ; \(\forall m\)
\(f\left(1\right)=\left(m^2+1\right)-2m^2-4+m^2+1=-2< 0\) ;\(\forall m\)
\(\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;1\right)\) (2)
\(f\left(2\right)=8\left(m^2+1\right)-8m^2-8+m^2+1=m^2+1>0\)
\(\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(1;2\right)\) (3)
\(f\left(-3\right)==-27\left(m^2+1\right)-18m^2+12+m^2+1=-44m^2-14< 0\)
\(\Rightarrow f\left(-3\right).f\left(0\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-3;0\right)\) (4)
Từ (1); (2); (3); (4) \(\Rightarrow f\left(x\right)=0\) có đúng 3 nghiệm phân biệt
2.
Đặt \(t=g\left(x\right)=x.cosx\)
\(g\left(x\right)\) liên tục trên R và có miền giá trị bằng R \(\Rightarrow t\in\left(-\infty;+\infty\right)\)
\(f\left(t\right)=t^3+m\left(t-1\right)\left(t+2\right)\)
Hàm \(f\left(t\right)\) xác định và liên tục trên R
\(f\left(1\right)=1>0\)
\(f\left(-2\right)=-8< 0\)
\(\Rightarrow f\left(1\right).f\left(-2\right)< 0\Rightarrow f\left(t\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left(-2;1\right)\)
\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm với mọi m
Đề bài ko đúng bạn
Hàm \(f\left(x\right)=x^{2020}+2020x+1\) là hàm đa thức nên liên tục trên R
\(f\left(-2\right)=2^{2020}+1-4040>0\)
\(f\left(-1\right)=-2018< 0\)
\(\Rightarrow f\left(-2\right).f\left(-1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-2;-1\right)\)
\(f\left(0\right)=1>0\)
\(\Rightarrow f\left(-1\right).f\left(0\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\)
Vậy pt đã cho có ít nhất 2 nghiệm (chính xác là có đúng 2 nghiệm)