\(x^4-2x^3+2x^2-2x+1\) với mọi x\(\in\)R....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2018

@Xin giấu tên
\(x>1\) suy ra \(x>0\) là điều hiển nhiên

Hơn nữa \(x>1\Rightarrow x-1>1-1\leftrightarrow x-1>0\) (liên hệ giữa thứ tự và phép cộng) - Lớp 8

7 tháng 6 2018

a) có \(\sqrt{x^2+2x+5}=\sqrt{x^2+2x+1+4}=\sqrt{\left(x+1\right)^2+4}\)\(\left(x+1\right)^2\ge0\forall x\in R\rightarrow\left(x+1\right)^2+4\ge0+4=4\forall x\in R\)

\(\Rightarrow\sqrt{x^2+2x+5}\ge\sqrt{0+4}=\sqrt{4}=2\) (đpcm)

Dấu "=" xảy ra khi và chỉ khi \(x=-1.\)

b) \(x>\sqrt{x}\Leftrightarrow x^2>x\Leftrightarrow x^2-x>0\)

\(\Leftrightarrow x\left(x-1\right)\ge0\)

\(x>1\rightarrow x>0;x-1>0\)

\(\Rightarrow x\left(x-1\right)>0\) với mọi \(x>1\)

hay \(x>\sqrt{x}\) (đpcm)

Chúc bạn học tốt!

29 tháng 5 2017

b/ Sửa đề chứng minh: \(\frac{5a-3b+2c}{a-b+c}>1\)

Theo đề bài ta có:

\(\hept{\begin{cases}f\left(-1\right)=a-b+c>0\left(1\right)\\f\left(-2\right)=4a-2b+c>0\left(2\right)\end{cases}}\)

Ta có: \(\frac{5a-3b+2c}{a-b+c}>1\)

\(\Leftrightarrow\frac{4a-2b+c}{a-b+c}>0\)

Mà theo (1) và (2) thì ta thấy cả tử và mẫu của biểu thức đều > 0 nên ta có ĐPCM

13 tháng 6 2018

I not sure for this answer if have any trouble you can ask me

a)\(\sqrt{x^2-4x+5}\ge\forall x\)

\(\Leftrightarrow\sqrt{x^2-4x+4+1}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)}^2+1\)

\(\sqrt{\left(x+1\right)^2}\ge0\forall x\)

nên \(\sqrt{\left(x+1\right)^2}+1>0\forall x\)

13 tháng 6 2018

sai ngữ pháp Tiếng Anh :))

3 tháng 8 2017

\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)

\(=\sqrt{\left(x-2\right)+2\sqrt{2\left(x-2\right)}+2}+\sqrt{\left(x-2\right)-2\sqrt{2\left(x-2\right)}+2}\)

\(=\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)

\(=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)

3 tháng 8 2017

\(VT=x+2\sqrt{2x-4}\)

\(=\left(x-2\right)+2\sqrt{2\left(x-2\right)}+2\)

\(=\left(\sqrt{x-2}+\sqrt{2}\right)^2=VP\left(\text{đ}pcm\right)\)

25 tháng 3 2017

giúp mk với ...đang cần gấp..

25 tháng 3 2017

Đặt 2x - 1 = a

=> x = \(\dfrac{a+1}{2}\)

=> x2 - x + 1 = \(\dfrac{a^2+3}{4}\)

=> x2 + x + 1 = \(\dfrac{a^2+4a+7}{4}\)

(2x + 1)\(\sqrt{x^2-x+1}\) > (2x - 1)\(\sqrt{x^2+x+1}\) (1)

(a + 2)\(\sqrt{\dfrac{a^2+3}{4}}\) > a\(\sqrt{\dfrac{a^2+4a+7}{4}}\)

=> (a + 2)2 \(\dfrac{a^2+3}{4}\) > a2 \(\dfrac{a^2+4a+7}{4}\)

=> a2(a + 2)2 + 3(a + 2)2 > a2(a + 2)2 + 3a2

=> 3a2 + 12(a + 1) > 3a2 (đúng) (2)

(2) đúng => (1) đc CM

13 tháng 10 2017

Lời giải:

Ta có \(S=x^2\left(x+1\right)^2+2x^2+2x+1\)

\(\Leftrightarrow S=\left(x^2+x\right)^2+2\left(x^2+x\right)+1\)

\(\Leftrightarrow S=\left(x^2+x+1\right)^2\) (theo các hằng đẳng thức đáng nhớ)

Do đó S là một số chính phương với mọi số tự nhiên x

20 tháng 10 2018

mk ko hiểu đề