\(2+2\sqrt{12n^2+1}\) là số tự nhiên thì T là số chính phương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2021

Bài này là đề tuyển sinh vào 10 của hà nội năm 2012 nếu mình không nhớ nhầm.

Bạn tìm trên mạng nhé.

13 tháng 6 2021

Không thấy bạn ơi

25 tháng 8 2016

Giả sử \(\sqrt{a}\)là 1 số hữu tỉ thì \(\sqrt{a}=\frac{m}{n}\)( với m , n = 1 )

Khi đó \(a^2=\frac{m^2}{n^2}\)

Vì a là số tự nhiên nên mchia hết cho n2

hay m chia hết cho n ( ngược với đk m,n = 1 )

=> ĐPCM

6 tháng 3 2020

Trả lời:

+ Giả sử \(\sqrt{a}\notin I\)

\(\Rightarrow\sqrt{a}\inℚ\)

\(\Rightarrow a=\frac{m}{n}\)với\(\left(m,n\right)=1;m,n\inℕ\)

+ Vì a không là số chính phương

\(\Rightarrow\sqrt{a}\notinℕ\)

\(\Rightarrow\frac{m}{n}\notinℕ\)

\(\Rightarrow n>1\)

+ Vì \(\sqrt{a}=\frac{m}{n}\)

\(\Rightarrow a=\frac{m^2}{n^2}\)

\(\Rightarrow m^2=an^2\)

+ Vì \(n>1\)

\(\Rightarrow\)Giả sử n có ước nguyên tố là p

\(n\inℕ\)

\(m^2=an^2\)

\(\Rightarrow m⋮p\)

\(\Rightarrow\)m,n có ƯC là p (Trái với giả thiết (m,n) = 1)

\(\Rightarrow\)Giả sử \(\sqrt{a}\notin I\)sai

\(\Rightarrow\sqrt{a}\in I\)

Vậy nếu số tự nhiên a không phải là số chính phương thì\(\sqrt{a}\)là số vô tỉ.

Hok tốt!

Good girl

20 tháng 5 2017

Điều kiện \(\hept{\begin{cases}x\ge0\\y\ge0\end{cases}}\)

\(1+\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}\)

\(\Leftrightarrow\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}-1\)  (\(\sqrt{x}+\sqrt{y}-1>0\))

\(\Leftrightarrow\sqrt{x}+\sqrt{y}-\sqrt{xy}+1=0\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y}=\sqrt{xy}-1\) (\(\sqrt{xy}-1>0\))

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2=\left(\sqrt{xy}-1\right)^2\)

\(\Leftrightarrow4\sqrt{xy}=x+y-xy-1\)

Vì x, y nguyên nên \(\sqrt{xy}\) cũng phải nguyên

\(\Rightarrow\sqrt{x}+\sqrt{y}=\sqrt{xy}-1\) nguyên  (1)

Ta lại có: 

\(x-y=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)

\(\Rightarrow\sqrt{x}-\sqrt{y}\) nguyên (2)

Lấy (1) + (2) và  (1) - (2) ta có:

\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}+\sqrt{x}-\sqrt{y}=2\sqrt{x}\\\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}=2\sqrt{y}\end{cases}}\)

\(\Rightarrow\sqrt{x},\sqrt{y}\) là số nguyên

Vậy x, y là bình phương đúng của 1 số nguyên.

20 tháng 5 2017

mình sửa lại cái đề là: x, y nguyên nha m.n

AH
Akai Haruma
Giáo viên
1 tháng 12 2018

Lời giải:

Để \(2+2\sqrt{12n^2+1}\in\mathbb{Z}\) thì \(12n^2+1\). phải là số chính phương lẻ.

Đặt \(12n^2+1=(2a+1)^2(a\in\mathbb{Z})\)

\(\Leftrightarrow 12n^2=4a^2+4a\Leftrightarrow 3n^2=a(a+1)\)

\(a(a+1)=3n^2\vdots 3\) nên xét các TH sau:

TH1: \(a\vdots 3\). Đặt \(a=3k\)

Ta có: \(3n^2=a(a+1)=3k(3k+1)\)

\(\Leftrightarrow n^2=k(3k+1)\)

Dễ thấy $(k,3k+1)=1$ nên để tích của chúng là scp thì bản thân mỗi số đó là scp \(\Rightarrow \left\{\begin{matrix} k=u^2\\ 3k+1=v^2\end{matrix}\right.\) \((u,v\in\mathbb{Z})\)

\(\Rightarrow 2+2\sqrt{12n^2+1}=2+2(2a+1)=4a+4=4.3k+4\)

\(=4(v^2-1)+4=(2v)^2\) là số chính phương (đpcm)

TH2: \(a+1\vdots 3\). Đặt \(a+1=3k\)

\(\Rightarrow n^2=(3k-1)k\). Dễ thấy $(3k-1,k)=1$ nên \(\left\{\begin{matrix} k=u^2\\ 3k-1=v^2\end{matrix}\right.(u,v\in\mathbb{Z})\)

\(\Rightarrow 3u^2-1=v^2\)

\(\Rightarrow v^2\equiv 2\pmod 3\) (vô lý- loại)

Vậy..........

6 tháng 11 2017

Câu 2: Nhân cả hai vế của phương trình với 4 , ta có:

\(4x^2+4y^2-4x-4x=32\Leftrightarrow\left(4x-4x+1\right)+\left(4y^2-4y+1\right)=34\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(2y-1\right)^2=34\)

Ta thấy 34 = 52 + 32 nên ta có bảng:

2x-15-53-3
x3-22-1
2y-15-53-3
y3-32-1

Vậy các cặp nghiệm nguyên thỏa mãn là (5;3) , (5;-3) , (-5;3) , (-5;-3) , (3; 5), (3;-5) , (-3; 5), (-3;-5)

7 tháng 11 2017

Xét \(x^2+\frac{1}{x^2}\)=\(\left(x+\frac{1}{x}\right)^2-2\in Z\).Giả sử đúng đến n=k , ta sẽ c/m n đúng đến k+1.

Điều này là hiển nhiên vì \(x^{k+1}+\frac{1}{x^{k+1}}=\left(x+\frac{1}{x}\right)\left(x^k+\frac{1}{x^k}\right)-x^{k-1}-\frac{1}{x^{k-1}}\in Z\)