Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
\(\frac{a^3+b^3}{c^3+d^3}=\frac{\left(bk\right)^3+b^3}{\left(dk\right)^3+d^3}=\frac{b^3\left(k^3+1\right)}{d^3\left(k^3+1\right)}=\frac{b^3}{d^3}\)
\(\frac{a+b^3}{c+d^3}=\frac{bk+b^3}{dk+d^3}\)
Đề bài sai nhé bạn
\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)
\(\Leftrightarrow\left(a+b\right)\left(d+a\right)=\left(b+c\right)\left(c+d\right)\)
\(\Leftrightarrow a\left(a+d\right)+b\left(a+d\right)=c\left(b+c\right)+d\left(b+c\right)\)
\(\Leftrightarrow a^2+ad+ab+bd=bc+c^2+bd+cd\)
\(\Leftrightarrow a^2+ad+ab=bc+c^2+cd\)
\(\Leftrightarrow a^2-c^2=bc+cd-ad-ab\)
\(\Leftrightarrow\left(a-c\right)\left(a+c\right)=b\left(c-a\right)+d\left(c-a\right)\)
\(\Leftrightarrow\left(a-c\right)\left(a+c\right)=\left(d+b\right)\left(c-a\right)\)
\(\Leftrightarrow\left(a-c\right)\left(a+c\right)+\left(d+b\right)\left(a-c\right)=0\)
\(\Leftrightarrow\left(a-c\right)\left(a+b+c+d\right)=0\)
Mà \(a+b+c+d\ne0\)nên \(a-c=0\Leftrightarrow a=c\left(đpcm\right)\)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
đặt: \(\frac{a}{c}=\frac{b}{d}=t\) Áp dụng Tính chất dãy tỉ số bằng nhau:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=t\Leftrightarrow\left(\frac{a-b}{c-d}\right)^2=t^2\)
\(\frac{a}{c}=\frac{b}{d}=t\Leftrightarrow\frac{ab}{cd}=t^2\)
\(\Rightarrowđpcm\)
a) \(\frac{a}{a+b}=\frac{c}{c+d}\)=> a . ( c + d ) = c . ( a + b )
=> ac + ad = ac + cb
=> ad = bc
=> \(\frac{a}{b}=\frac{c}{d}\)
Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\Leftrightarrow\left(a^2+b^2\right)\cdot cd=\left(c^2+d^2\right)\cdot ab\)
\(\Rightarrow a^2\cdot cd+b^2\cdot cd=c^2\cdot ab+d^2\cdot ab\)
\(\Rightarrow a^2\cdot cd+b^2\cdot cd-c^2\cdot ab-d^2\cdot ab=0\)
\(\Rightarrow\left(a^2\cdot cd-c^2\cdot ab\right)+\left(b^2\cdot cd-d^2\cdot ab\right)=0\)
\(\Rightarrow ac\cdot\left(ad-bc\right)+bd\cdot\left(bc-ad\right)=0\)
\(\Rightarrow ac\cdot\left(ad-bc\right)-bd\cdot\left(ad-bc\right)=0\)
\(\Rightarrow\left(ac-bd\right)\cdot\left(ad-bc\right)=0\)
Tự làm tiếp nhé.......
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
a) Ta có:
\(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\) (1)
\(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{a+b}=\frac{c}{c+d}\)
b) Ta có:
\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\) (1)
\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{a-b}=\frac{c}{c-d}\)
c) Ta có:
\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Với \(a,b,c,d\ne0\) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{b}{d}\left(1\right)\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\Rightarrow\frac{a-b}{c-d}=\frac{b}{d}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)