Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{b+c+d+a}=1\) (dãy tỉ số bằng nhau)
\(\Rightarrow\frac{a+b}{a+c}=1\Leftrightarrow a+b=b+c\Rightarrow a=c\)(đpcm)
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
a) Ta có:
\(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\) (1)
\(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{a+b}=\frac{c}{c+d}\)
b) Ta có:
\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\) (1)
\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{a-b}=\frac{c}{c-d}\)
c) Ta có:
\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Với \(a,b,c,d\ne0\) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{b}{d}\left(1\right)\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\Rightarrow\frac{a-b}{c-d}=\frac{b}{d}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)
\(\frac{a+b}{c+d}=\frac{b+c}{d+a}=\frac{d+a}{d+c}=\frac{b+c}{b+a}=1+\frac{a}{c}=1+\frac{c}{a}\)
\(\Rightarrow\frac{a}{c}=\frac{c}{a}\)
\(\Rightarrow a^2=c^2\)
Vậy a=c khi a,c cùng nguyên dương
a=c khi a,c cùng nguyên âm
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow\frac{b}{a}+1=\frac{d}{c}+1\Leftrightarrow\frac{a+b}{a}=\frac{c+d}{c}\) (1)
\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow1-\frac{b}{a}=1-\frac{d}{c}\)
\(\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\) (2)
Nhân vế (1) và (2) lại ta được:
\(\frac{a+b}{a}\cdot\frac{a}{a-b}=\frac{c+d}{c}\cdot\frac{c}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
a) \(\frac{a}{a+b}=\frac{c}{c+d}\)=> a . ( c + d ) = c . ( a + b )
=> ac + ad = ac + cb
=> ad = bc
=> \(\frac{a}{b}=\frac{c}{d}\)
\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)
\(\Leftrightarrow\left(a+b\right)\left(d+a\right)=\left(b+c\right)\left(c+d\right)\)
\(\Leftrightarrow a\left(a+d\right)+b\left(a+d\right)=c\left(b+c\right)+d\left(b+c\right)\)
\(\Leftrightarrow a^2+ad+ab+bd=bc+c^2+bd+cd\)
\(\Leftrightarrow a^2+ad+ab=bc+c^2+cd\)
\(\Leftrightarrow a^2-c^2=bc+cd-ad-ab\)
\(\Leftrightarrow\left(a-c\right)\left(a+c\right)=b\left(c-a\right)+d\left(c-a\right)\)
\(\Leftrightarrow\left(a-c\right)\left(a+c\right)=\left(d+b\right)\left(c-a\right)\)
\(\Leftrightarrow\left(a-c\right)\left(a+c\right)+\left(d+b\right)\left(a-c\right)=0\)
\(\Leftrightarrow\left(a-c\right)\left(a+b+c+d\right)=0\)
Mà \(a+b+c+d\ne0\)nên \(a-c=0\Leftrightarrow a=c\left(đpcm\right)\)