Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^2=cb
=> aa=cb
=>a/c=b/a=a+b/c+a=a-b/c-a
=>a+b/a-b=c+a/c-a
Ác Mộng sai rồi:
Ta có:\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\left(a+b\right)\left(c-a\right)=\left(a-b\right)\left(c+a\right)\Leftrightarrow ac-a^2+bc-ab=ac+a^2-bc-ab\Leftrightarrow2a^2=2bc\Leftrightarrow a^2=bc\)
Vậy có thể đảo lại là đúng!!!!!
Chúc bạn học tốt ^_^
\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
\(\Leftrightarrow\left(a+b\right)\left(c-a\right)=\left(c+a\right)\left(a-b\right)\)
\(\Leftrightarrow ac-a^2+bc-ab=ac+a^2-bc-ab\)
\(\Leftrightarrow\left(ac-ac\right)+\left(bc+bc\right)=\left(a^2+a^2\right)+\left(-ab+ab\right)\)
\(\Leftrightarrow2bc=2a^2\)
\(\Leftrightarrow a^2=bc\left(đpcm\right)\)
Vậy \(a^2=bc\Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\left(đpcm\right)\)
1. Ta có: \(\dfrac{a}{b}=\dfrac{ab}{cd},\dfrac{c}{d}=\dfrac{bc}{bd}\)
a) Mẫu chung bd > 0 ( do b > 0, d > 0 ) nên nếu \(\dfrac{ad}{bd}< \dfrac{bc}{bd}\) thì ad < bc
b) Ngược lại, Nếu ad < bc thì \(\dfrac{ad}{bd}< \dfrac{bc}{bd}.\Rightarrow\dfrac{a}{b}< \dfrac{c}{d}\)
Ta có thể viết: \(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow ad< bc\)
2. a) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\) ( 1 )
Thêm ab vào 2 vế của (1): \(ad+ab< bc+ab\)
\(a\left(b+d\right)< b\left(a+c\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) ( 2 )
Thêm cd vào 2 vế của (1): \(ad+cd< bc+cd\)
\(d\left(a+c\right)< c\left(b+d\right)\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) ( 3 )
Từ (2) và (3) ta có: \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
Ta có:
\(a^2\) \(=b.c\Rightarrow\dfrac{a}{c}=\dfrac{b}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)
Từ \(\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
Vậy \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
Ta có:
\(a^2=b.c\) \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-c}{b-a}\)
\(Từ\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\Rightarrow\dfrac{a+b}{c+a}=\dfrac{c+a}{c-a}\)
\(\)Vậy \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
Thay vì áp dụng t/c dãy tỉ số bằng nhau,ta áp dụng cách đặt k cho ngắn! =)
a) Chứng minh: Nếu \(a^2=bc\) thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Đặt \(a^2=bc=k\Rightarrow\frac{a}{c}=\frac{b}{a}=k\Rightarrow\hept{\begin{cases}a=kc\\b=ka\end{cases}}\). Thay vào,ta có:
\(\frac{a+b}{a-b}=\frac{kc+ka}{kc-ka}=\frac{k\left(c+a\right)}{k\left(c-a\right)}=\frac{c+a}{c-a}^{\left(đpcm\right)}\)
b)Bạn tham khảo bài của Đỗ Ngọc Hải ở đây nhé: Câu hỏi của ngô minh hoàng - Toán lớp 7 - Học toán với OnlineMath
Áp dụng tính chất 2 phân số bằng nhau:\(\dfrac{a}{b}=\dfrac{c}{d}=>ad=bc\) , ta có:
\(=>\left(a+b\right)\left(c-a\right)=\left(a-b\right)\left(c+a\right)\)
\(=>ac-a^2+bc-ab=ac+a^2-bc-ab\)
\(=>-a^2+bc=a^2-bc\)
\(=>bc-a^2-\left(a^2-bc\right)=0\)
\(=>2bc-2a^2=0=>2\left(bc-a^2\right)=0=>bc-a^2=0\)
\(=>bc=a^2\)
CHÚC BẠN HỌC TỐT........