K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

Áp dụng kết quả bài 5, ta có: Giải sách bài tập Toán 7 | Giải sbt Toán 7 ⇒ ad < bc (1)

Cộng cả hai vế của (1) với ab ta có: ab + ad < ab + bc

hay a(b + d) < b.(a + c)

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Cộng cả hai vế của (1) với cd ta có: ad + cd < bc + cd

Hay d(a + c) < c(b + d)

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Vậy Giải sách bài tập Toán 7 | Giải sbt Toán 7

25 tháng 10 2017

\(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad< bc\)

\(\Rightarrow ab+ad< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)( 1 )

Lại có : ad < bc

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

27 tháng 8 2015

Ta có : \(\frac{a}{b}<\frac{c}{d}\Rightarrow\frac{ad}{bd}<\frac{cb}{bd}\)

\(\Rightarrow\)\(ad\)\(<\)\(cb\) (vì \(bd>0\))  \(\left(1\right)\)

\(\frac{a}{b}=\frac{a\left(b+d\right)}{b\left(b+d\right)}=\frac{ab+ad}{b\left(b+d\right)}\)

\(\frac{a+c}{b+d}=\frac{\left(a+c\right)b}{\left(b+d\right)b}=\frac{ab+cb}{b\left(b+d\right)}\)

vì \(b,d>0\Rightarrow b\left(b+d\right)>0\)   \(\left(1\right)\)

vì \(ad\)\(<\)\(cd\Rightarrow\)\(ab+ad\)\(<\)\(ab+cb\)   \(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\)  \(\Rightarrow\) \(\frac{ab+ad}{b\left(b+d\right)}<\frac{ab+cb}{b\left(b+d\right)}\)

  hay \(\frac{a}{b}<\frac{a+c}{b+d}\) \(\left(\cdot\right)\)

    \(\frac{a+c}{b+d}=\frac{d\left(a+c\right)}{d\left(b+d\right)}=\frac{ad+cd}{d\left(b+d\right)}\)

     \(\frac{c}{d}=\frac{c\left(b+d\right)}{d\left(b+d\right)}=\frac{cb+cd}{d\left(b+d\right)}\)

Vì \(ad\)\(<\)\(cd\Rightarrow\)\(ad+cd<\)\(cb+cd\)    \(\left(3\right)\)

Từ \(\left(1\right)\) và \(\left(3\right)\) \(\Rightarrow\frac{ad+cd}{d\left(b+d\right)}<\frac{cb+cd}{d\left(b+d\right)}\)

     hay \(\frac{a+c}{b+d}<\frac{c}{d}\)    \(\left(\cdot\cdot\right)\)

Từ \(\left(\cdot\right)\) và \(\left(\cdot\cdot\right)\Rightarrow\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}\)

 

23 tháng 8 2020

dễ quá !!!

25 tháng 6 2016

Ta có:a/b<c/d =>ad<bc                    (1)

Thêm ab vào (1) ta đc:

ad+ab<bc+ab hay a(b+d)<b(a+c) =>a/b<a+c/b+d             (2)

Thêm cd vào 2 vế của (1), ta lại có:

ad+cd<bc+cd hay d(a+c)<c(b+d) => c/d>a+c/b+d               (3)

Từ (2) và (3) suy ra:a/b<a+c/b+d<c/d

22 tháng 7 2017

ta có:a/b<c/d nên ad<bc

(1)ab+ad<ab+bc=a(b+d)<b(a+c)=>a/b<a+c/b+d(thêm ab vào hai vế)

(2)ad+cd<bc+cd=(a+c)d<(b+d)c=>a+c/b+d<c/d(thêm cd vào hai vế)

từ(1)và(2)ta có:a/b<a+c/b+d<c/d

15 tháng 9 2019

Bạn tham khảo tại đây:

Câu hỏi của Mạnh Khuất - Toán lớp 7 - Học toán với OnlineMath

5 tháng 6 2019

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

+) \(ad+ab< bc+ab\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)( 1 )

+) \(ad+cd< bc+cd\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

5 tháng 6 2019

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\)

 Vì \(b,d>0\Rightarrow bd>0\)

\(\Rightarrow ad< bc\)

Ta lại có:

\(\frac{a}{b}=\frac{a\left(b+d\right)}{b\left(b+d\right)}=\frac{ab+ad}{b\left(b+d\right)}\)

\(\frac{a+c}{b+d}=\frac{b\left(a+c\right)}{b\left(b+d\right)}=\frac{ab+bc}{b\left(b+d\right)}\)

Vì \(b,d>0\)

Nên \(b\left(b+d\right)>0\)và \(d\left(b+d\right)>0\)         \(\left(1\right)\)

Mà \(ad< bc\Leftrightarrow ab+ad< ab+bc\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)ta có: \(\frac{ab+ad}{b\left(b+d\right)}>\frac{ab+bc}{b\left(b+d\right)}\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(\cdot\right)\)

Ta lại có:

\(\frac{a+c}{b+d}=\frac{d\left(a+c\right)}{d\left(b+d\right)}=\frac{ad+cd}{d\left(b+d\right)}\)

\(\frac{c}{d}=\frac{c\left(b+d\right)}{d\left(b+d\right)}=\frac{bc+cd}{d\left(b+d\right)}\)

Mà \(ad< bc\Rightarrow ad+cd< bc+cd\left(3\right)\)

Từ \(\left(1\right)\)và \(\left(3\right)\)ta có:

\(\frac{ad+cd}{d\left(b+d\right)}< \frac{bc+cd}{d\left(b+d\right)}\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(\cdot\cdot\right)\)

Từ \(\left(\cdot\right)\)và \(\left(\cdot\cdot\right)\)ta có: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

1 tháng 7 2016

Vì  \(\frac{a}{b}\)  < \(\frac{c}{d}\)  nên ad < bc         (1)

Xét tích a(b + d) = ab + ad          (2)

             b ( a + c ) = ba + bc        (3)

Từ (1);(2);(3) suy ra a(b+d) < b(a+c)   do đó  \(\frac{a}{b}\)  < \(\frac{a+c}{b+d}\)        (4)

Tương tự ta có \(\frac{a+c}{b+d}\)    <  \(\frac{c}{d}\)   (5)

kết hợp (4) ; (5) ta được \(\frac{a}{b}\)  < \(\frac{a+c}{b+d}\)  < \(\frac{c}{d}\)  

28 tháng 10 2016

\(\frac{a}{b}< \frac{c}{d}=>ad< bc\)

=>ad+ab<bc+ab

=>a(b+d)<b(a+c)

=>\(\frac{a}{b}< \frac{a+c}{b+d}\) (1)

\(\frac{a}{b}< \frac{c}{d}=>ad< bc\)

=>ad+cd<bc+cd

=>a(a+c)<c(b+d)

=>\(\frac{a+c}{b+d}< \frac{c}{d}\) (2)

từ (1)(2)=>\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

chúc bạn học tốtok