K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2017

Với mọi giá trị của \(x;y;z\in R\) ta có:

\(\left(1-x\right)^2\ge0;\left(x-y\right)^2\ge0;\left(y-z\right)^2\ge0\)

\(\Rightarrow\left(1-x\right)^2+\left(x-y\right)^2+\left(y-z\right)^2\ge0\)

Để \(\left(1-x\right)^2+\left(x-y\right)^2+\left(y-z\right)^2=0\) thì

\(\left\{{}\begin{matrix}\left(1-x\right)^2=0\\\left(x-y\right)^2=0\\\left(y-z\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}1-x=0\\x-y=0\\y=z=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\1-y=0\\y-z=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\\1-z=0\end{matrix}\right.\Rightarrow x=y=z=1\) (đpcm)

Chúc bạn học tốt!!!

18 tháng 6 2017

Ta có: \(\left\{{}\begin{matrix}\left(1-x\right)^2\ge0\\\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\end{matrix}\right.\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}1-x=0\\x-y=0\\y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=x\\z=y\end{matrix}\right.\Leftrightarrow x=y=z=1\)

=> đpcm

26 tháng 4 2019

Ta có: \(\hept{\begin{cases}\left(1-x\right)^2\ge0\\\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\end{cases}\forall x\inℝ}\)

\(\Rightarrow VT=0\Leftrightarrow\hept{\begin{cases}1-x=0\\x-y=0\\y-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\1-y=0\Rightarrow y=1\\1-z=0\Rightarrow z=1\end{cases}}\Leftrightarrow x=y=z\left(đpcm\right)\)

P/s: VT: vế trái

30 tháng 3 2015

   Đúng thì like phát nha

Vì (1-x)2 >=0; (x-y)2 >=0; (y-z)2 >=0

Mặt khác (1-x)2+(x-y)2+(y-z)2=0

=>  (1-x)2=0         =>    1-x=0

      (x-y)2=0                 x-y=0

      (y-z)2=0                 y-z=0

=>   x=1

       y=x

       z=y

=>x=y=z=1

Vậy x=y=z=1

1 tháng 4 2018

Ta có : 

\(\left(1-x\right)^2\ge0\forall x\)

\(\left(x-y\right)^2\ge0\forall x;y\)

\(\left(y-z\right)^2\ge0\forall y;z\)

\(\Rightarrow\left(1-x\right)^2+\left(x-y\right)^2+\left(y-z\right)^2\ge0\)

Dấu bằng xảy ra khi :

\(\hept{\begin{cases}1-x=0\\x-y=0\\y-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\z=1\end{cases}}\)

23 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

30 tháng 12 2018

khó quá

30 tháng 12 2018

mình mới họclớp 5 à khó quá

19 tháng 3 2020

\(x+\frac{1}{y}=y+\frac{1}{z}\Rightarrow x-y=\frac{1}{z}-\frac{1}{y}=\frac{z-y}{zy}\)

\(y+\frac{1}{z}=z+\frac{1}{x}\Rightarrow y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}\)

\(z+\frac{1}{x}=x+\frac{1}{y}\Rightarrow z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\)

\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{y-z}{zy}\cdot\frac{z-x}{zx}\cdot\frac{x-y}{xy}\)

\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(y-z\right)\left(z-x\right)\left(x-y\right)}{x^2y^2z^2}\)

\(\Rightarrow x^2y^2z^2\left(x-y\right)\left(y-z\right)\left(z-x\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

\(\Rightarrow\left(x^2y^2z^2-1\right)\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2y^2z^2-1=0\\\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x^2y^2z^2=1\\x=y=z\end{cases}}\)

30 tháng 1 2017

x+1/y=y+1/z => x-y=1/z-1/y=(y-z)/yz 

Tương tự y-z=(z-x)/zx ; z-x=(x-y)/xy

Nhân theo vế các đẳng thức trên  ta đc:

(x-y)(y-z)(z-x)=(x-y)(y-z)(z-x)/x2y2z2

=>(x-y)(y-z)(z-x)x2y2z2-(x-y)(y-z)(z-x)=0

=>(x-y)(y-z)(z-x)(x2y2z2-1)=0

=>x-y=0 hoặc y-z=0 hoặc z-x=0 hoặc x2y2z2-1=0

=>x=y=z hoặc x2y2z2=1(đfcm)

31 tháng 1 2017
Bài làm mắc hai lỗi nghiêm trọng: