Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\hept{\begin{cases}\left(1-x\right)^2\ge0\\\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\end{cases}\forall x\inℝ}\)
\(\Rightarrow VT=0\Leftrightarrow\hept{\begin{cases}1-x=0\\x-y=0\\y-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\1-y=0\Rightarrow y=1\\1-z=0\Rightarrow z=1\end{cases}}\Leftrightarrow x=y=z\left(đpcm\right)\)
P/s: VT: vế trái
Đúng thì like phát nha
Vì (1-x)2 >=0; (x-y)2 >=0; (y-z)2 >=0
Mặt khác (1-x)2+(x-y)2+(y-z)2=0
=> (1-x)2=0 => 1-x=0
(x-y)2=0 x-y=0
(y-z)2=0 y-z=0
=> x=1
y=x
z=y
=>x=y=z=1
Vậy x=y=z=1
Ta có :
\(\left(1-x\right)^2\ge0\forall x\)
\(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(y-z\right)^2\ge0\forall y;z\)
\(\Rightarrow\left(1-x\right)^2+\left(x-y\right)^2+\left(y-z\right)^2\ge0\)
Dấu bằng xảy ra khi :
\(\hept{\begin{cases}1-x=0\\x-y=0\\y-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\z=1\end{cases}}\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(x+\frac{1}{y}=y+\frac{1}{z}\Rightarrow x-y=\frac{1}{z}-\frac{1}{y}=\frac{z-y}{zy}\)
\(y+\frac{1}{z}=z+\frac{1}{x}\Rightarrow y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}\)
\(z+\frac{1}{x}=x+\frac{1}{y}\Rightarrow z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{y-z}{zy}\cdot\frac{z-x}{zx}\cdot\frac{x-y}{xy}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(y-z\right)\left(z-x\right)\left(x-y\right)}{x^2y^2z^2}\)
\(\Rightarrow x^2y^2z^2\left(x-y\right)\left(y-z\right)\left(z-x\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
\(\Rightarrow\left(x^2y^2z^2-1\right)\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2y^2z^2-1=0\\\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2y^2z^2=1\\x=y=z\end{cases}}\)
x+1/y=y+1/z => x-y=1/z-1/y=(y-z)/yz
Tương tự y-z=(z-x)/zx ; z-x=(x-y)/xy
Nhân theo vế các đẳng thức trên ta đc:
(x-y)(y-z)(z-x)=(x-y)(y-z)(z-x)/x2y2z2
=>(x-y)(y-z)(z-x)x2y2z2-(x-y)(y-z)(z-x)=0
=>(x-y)(y-z)(z-x)(x2y2z2-1)=0
=>x-y=0 hoặc y-z=0 hoặc z-x=0 hoặc x2y2z2-1=0
=>x=y=z hoặc x2y2z2=1(đfcm)
Với mọi giá trị của \(x;y;z\in R\) ta có:
\(\left(1-x\right)^2\ge0;\left(x-y\right)^2\ge0;\left(y-z\right)^2\ge0\)
\(\Rightarrow\left(1-x\right)^2+\left(x-y\right)^2+\left(y-z\right)^2\ge0\)
Để \(\left(1-x\right)^2+\left(x-y\right)^2+\left(y-z\right)^2=0\) thì
\(\left\{{}\begin{matrix}\left(1-x\right)^2=0\\\left(x-y\right)^2=0\\\left(y-z\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}1-x=0\\x-y=0\\y=z=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\1-y=0\\y-z=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\\1-z=0\end{matrix}\right.\Rightarrow x=y=z=1\) (đpcm)
Chúc bạn học tốt!!!
Ta có: \(\left\{{}\begin{matrix}\left(1-x\right)^2\ge0\\\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\end{matrix}\right.\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}1-x=0\\x-y=0\\y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=x\\z=y\end{matrix}\right.\Leftrightarrow x=y=z=1\)
=> đpcm