Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(10^{28}+8=\left(10^3\right)^{25}+8=8^{25}.125^{25}+8⋮8\)
Mặt khác:
\(10^{28}+8=10^{28}-1+9=\left(10-1\right).A+9=9A+9⋮9\)
\(\)Mà \(\left(8;9\right)=1\Rightarrow10^{28}+8⋮72\)
Ta có:
n2 + 4n + 5
= n2 - 1 + 4n + 6
= (n - 1).(n + 1) + 2.(2n + 3)
Do n lẻ nên n - 1 và n + 1 là 2 số chẵn liên tiếp
=> (n - 1).(n + 1) chia hết cho 8
Mà 2n + 3 lẻ => 2n + 3 không chia hết cho 4 => 2.(2n + 3) không chia hết cho 8
=> (n - 1).(n + 1) + 2.(2n + 3) không chia hết cho 8
=> n2 + 4n + 5 không chia hết cho 8
=> đpcm
Ủng hộ mk nha ^-^
nếu gọi tổng bên trái là A thì A chia hết cho 8 khi A ít nhất là A chia hết cho 4 và A phải là số chẵn.đấy là điều kiện cần,còn điều kiện bắt buộc thì A phải chia hết cho 8,hay bội số cua 8.
Đặt n=2k+1 với k thuộc Z
A=(2k+1)^2+4(2k+1)+5=4k^2+12k+10=
(2k+3)^2+1
ta biết 1 số bình phương chia cho 8 thì dư 1 hoặc 3(bạn nên chứng minh thêm bài toán phụ này)
khi đó A chia 8 sẽ dư 2 hoăc 4,suy ra đpcm
Tick nha Link Pro
Nếu $1$ thì:
$A=(2n+20)(4n+8)=(2.1+20)(4.1+8)=264$ không chia hết cho 16 bạn nhé.
Bạn coi lại đề.
nếu gọi tổng bên trái là A thì A chia hết cho 8 khi A ít nhất là A chia hết cho 4 và A phải là số chẵn.đấy là điều kiện cần,còn điều kiện bắt buộc thì A phải chia hết cho 8,hay bội số cua 8.
Đặt n=2k+1 với k thuộc Z
A=(2k+1)^2+4(2k+1)+5=4k^2+12k+10=
(2k+3)^2+1
ta biết 1 số bình phương chia cho 8 thì dư 1 hoặc 3(bạn nên chứng minh thêm bài toán phụ này)
khi đó A chia 8 sẽ dư 2 hoăc 4,suy ra đpcm
Các bạn nhwos tick mình nha ^^