Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai số có chữ số tận cùng giống nhau nên ta sẽ đi CM: n^5 - n chia hết cho 10
Dễ thấy n^5 và n cùng tính chất chẵn lẻ nên n^5 -n chia hết cho 2 (1)
Ta có: n^5 - n = n(n+1)(n-1)(n²+1)
= n(n+1)(n-1)(n+2)(n-2) + 5n(n-1)(n+1)
Số hạng cuối thì chia hết cho 5 còn số hạng đầu là tích của 5 số tự nhiên liên tiếp nên cũng chia hết cho 5 => n^5-n chia hết cho 5 (2)
Từ (1), (2) và do 2 và 5 là hai số nguyên tố cùng nhau ta sẽ có đpcm!
Coi chữ số tận cùng của n là h
Với n lẻ :
\(n^5=n^4.n=\left(...1\right).n=\left(..1\right)\left(...a\right)=\left(...a\right)\)
Tương tự với n chẵn :
\(n^5=n^4.n=\left(...6\right).n=\left(..6\right)\left(...a\right)=\left(...a\right)\)
Vậy ...
Không hiểu nổi @trần thùy dung CTV viết cái gì nữa:
\(A=n^5-n\)
A chia hết cho 5 với mọi n thuộc N (*)
\(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)=> A chia hết cho 2 (**)
(*)&(**)=> A chia hết cho 10=> A tận cùng là 0 vậy n^5 và n có số tận cùng = nhau=> dpcm
p/s: (*) nếu cần có thể c/m nhưng nó thuộc t/c do vậy ko cần c/m nữa
Nếu n và n5 có chữ số tận cùng giống nhau
⇒n5−n⋮10⇒n5−n⋮10
Ta có:
n5−nn5−n
=n(n4−1)=n(n4−1)
=n(n2−1)(n2+1)=n(n2−1)(n2+1)
=n(n−1)(n+1)(n2−4+5)=n(n−1)(n+1)(n2−4+5)
=n(n−1)(n+1)(n2−4)+5n(n−1)(n+1)=n(n−1)(n+1)(n2−4)+5n(n−1)(n+1)
=n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)=n(n−1)(n+1)(n−2)(n+2)+5n(n−1)(n+1)
Vì n(n−1)(n+1)(n−2)(n+2)n(n−1)(n+1)(n−2)(n+2) là tích của 5 số tự nhiên liên tiếp
⇒n(n−1)(n+1)(n−2)(n+2)⋮5⇒n(n−1)(n+1)(n−2)(n+2)⋮5
Vì n(n−1)n(n−1) là tích của hai số tự nhiên liên tiếp
⇒n(n−1)(n+1)(n−2)(n+2)⋮2⇒n(n−1)(n+1)(n−2)(n+2)⋮2
⇒n(n−1)(n+1)(n−2)(n+2)⋮10(1)⇒n(n−1)(n+1)(n−2)(n+2)⋮10(1)
Ta có: 5n(n−1)(n+1)(n−2)(n+2)⋮55n(n−1)(n+1)(n−2)(n+2)⋮5
Vì n(n−1)n(n−1) là tích của hai số tự nhiên liên tiếp
⇒5n(n−1)(n+1)⋮2⇒5n(n−1)(n+1)⋮2
⇒5n(n−1)(n+1)⋮10(2)⇒5n(n−1)(n+1)⋮10(2)
Từ (1) và (2) suy ra
n(n+1)(n−1)(n−2)(n+2)+5n(n−1)(n+1)⋮10n(n+1)(n−1)(n−2)(n+2)+5n(n−1)(n+1)⋮10
⇒n5−n⋮10⇒n5−n⋮10
Vậy n và n5 có chữ số tận cùng giống nhau
hok tốt
Ta có: \(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2-4+5\right)=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2+1\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)\left(n+1\right)\)
Ta thấy (n-2)(n-1)n(n+1)(n+2) là 5 số tự nhiên liên tiếp đồng thời chia hết cho 2 và 5
hay (n-2)(n-1)n(n+1)(n+2) chia hết cho 10 (1)
Ta lại có: (n-1)n(n+1) là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 2
=> 5(n-1)(n+1) chia hết cho 10 (2)
Từ (1)(2) => \(n^5-n\)chia hết cho 10 hay có chữ số tận cùng là 0
=> đpcm
xét từng chữ số tận cùng của n
VD Với n có tận cùng là 1 thì n^5 có tận cùng là 1
Với n có tận cùng là 2 thì n^4 có tận cùng là 6.Suy ra n^5 có tận cùng là 2
Với n có tận cùng là 3 thìn^4 có tận cùng là 1.Suy ra n^5 có tận cùng là 3
........
Theo mình là như thế
xét từng chữ số tận cùng của n
VD Với n có tận cùng là 1 thì n^5 có tận cùng là 1
Với n có tận cùng là 2 thì n^4 có tận cùng là 6.Suy ra n^5 có tận cùng là 2
Với n có tận cùng là 3 thìn^4 có tận cùng là 1.Suy ra n^5 có tận cùng là 3
........
Tự tìm nha
Ta có: \(n^5-n=n\left(n^4-1\right)\)
\(=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n^2-1\right)\left(n^2-4+5\right)\)
\(=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Vì \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)là tích của 5 số tự nhiên liên tiếp
nên \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\)
Lại có \(5n\left(n-1\right)\left(n+1\right)⋮5\)
\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮5\left(1\right)\)
Xét \(n\left(n-1\right)\)là tích của 2 số tự nhiên liên tiếp
\(\Rightarrow n\left(n-1\right)⋮2\)
\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮2\left(2\right)\)
Mà \(\left(2;5\right)=1\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow n^5-n⋮2.5\)
\(\Rightarrow n^5-n⋮10\)
\(\Leftrightarrow n\)và \(n^5\)có chữ số tận cùng giống nhau
Vậy ,...
Vì a và b là 2 số có tổng chia hết cho 10
Nên tổng các chữ số tận cùng của 2 số này chia hết cho 10
-) Nếu chữ số tận cùng của a và b bằng nhau
Thì chữ số tận cùng của a và b đều là 5 hoặc 0
Do đó a2 và b2 có cùng chữ số tận cùng
-) Nếu chữ số tận cùng của a lớn hơn b ( làm tương tự với c
+) Nếu chữ số tận cùng của a bằng 6
Do đó chữ số tận cùng của b bằng 4
Hai số này bình phương có cùng chữ số tận cùng là 6
+) Nếu chữ số tận cùng của a bằng 7
Do đó chữ số tận cùng của b bằng 3
Hai số này có bình phương có cùng chữ số tận cùng là 9
+) Nếu chữ số tận cùng của a bằng 8
Do đó chữ số tận cùng của b bằng 2
Hai số này có bình phương có cùng chữ số tận cùng là 4
+) Nếu chữ số tận cùng của a bằng 9
Do đó chữ số tận cùng của b bằng 1
Hai số này có bình phương có cùng chữ số tận cùng là 1
Vậy a2 và b2 có chữ số tận cùng giống nhau khi a và b có tổng chia hết cho 10
gọi chữ số tận cùng của 7n là:a
ta có:7n+4=7n.74=(...a).2401=...a
=>đpcm
không như nhau đâu, có 2 số 0;5 sao mà như nhau được ,(55=3125 ;105=100000)
Nếu n và n5 có chữ số tận cùng giống nhau
\(\Rightarrow n^5-n⋮10\)
Ta có:
\(n^5-n\)
\(=n\left(n^4-1\right)\)
\(=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Vì \(n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\) là tích của 5 số tự nhiên liên tiếp
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\)
Vì \(n\left(n-1\right)\) là tích của hai số tự nhiên liên tiếp
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮2\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮10\left(1\right)\)
Ta có: \(5n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\)
Vì \(n\left(n-1\right)\) là tích của hai số tự nhiên liên tiếp
\(\Rightarrow5n\left(n-1\right)\left(n+1\right)⋮2\)
\(\Rightarrow5n\left(n-1\right)\left(n+1\right)⋮10\left(2\right)\)
Từ (1) và (2) suy ra
\(n\left(n+1\right)\left(n-1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮10\)
\(\Rightarrow n^5-n⋮10\)
Vậy n và n5 có chữ số tận cùng giống nhau