K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2018

Ta có: 32n + 1 = 3 . 9n \(\equiv\)3 . 2n (mod 7)

2n + 2  = 4 . 2n \(\equiv\)4 . 2n (mod 7)

=> 32n + 1 + 2n + 2 \(\equiv\)3 . 2n + 4 . 2\(\equiv\)7 . 2n \(\equiv\)0 (mod 7) (ĐPCM)

18 tháng 9 2016

Do n( n+1) là hai số tự nhiên liên tiếp ( n thuộc N) => n( n+1) chia hết cho 2 (1)

Do 2n chia hết cho 2 => 2n + 1 chia hết cho 3 ( 2)    ( đoạn này hơi tắt)

Từ (1) và (2) => n ( n+1) ( 2n+1) chia hết cho BCNN( 2, 3) hay n( n+1) ( 2n+1) chia hết cho 6( đpcm) 

k nha

12 tháng 7 2021

Ta có: (2n-3)n-2n(n+2)=2n^3-3n-2n^3-4n

                                    =-7n chia hết cho 7

Vậy (2n-3)n-2n(n+2) chia hết cho 7 với mọi số nguyên n (đpcm)

8 tháng 12 2017

Ta thấy \(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{2007}\)

\(A=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+...+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)

\(A=-7.\left[1+\left(-7\right)+49\right]+\left(-7\right)^4.\left[1+\left(-7\right)+49\right]+...+\left(-7\right)^{2005}.\left[1+\left(-7\right)+49\right]\)

\(A=-7.43+\left(-7\right)^4.43+...+\left(-7\right)^{2005}.43\)

\(A=43\left[\left(-7\right)+\left(-7\right)^4+...+\left(-7\right)^{2005}\right]⋮43\)

Vậy A chia hết cho 43.

5 tháng 4 2020

tổng A luôn chia hết nha bạn

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

15 tháng 7 2017

Ta có : \(n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n^4-1\right)=n^5-n\)

Vì \(n^5=n^{4+1}\) luôn có số tận cùng giống n

\(\Rightarrow n^5-n=\overline{.....0}⋮5\)

Hay \(n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮5\) (đpcm)