\((p-1)\)\((p+1)\)t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2019

Ta có : 2n -1 ; 2n và 2n + 1 là 3 số tự nhiên liên tiếp.

Trong 3 số tự nhiên liên tiếp chắc chắn có 1 số  \(⋮\)3

Mà 2n - 1 là số nguyên tố => 2n + 1 không chia hết cho 3

và 2n ko chia hết cho 3 ( vì 2n là bội của 2 ko chia hết cho 3 và n>2)

=> 2n +1 chia hết cho\(⋮\)3

=> 2n +1 là hợp số 

   => Điều cần chứng minh

16 tháng 1 2019

bn trong doi tuyen ha?

15 tháng 8 2018

1) trả lời

4253 + 1422 =5775

mà 5775 chia hết cho 3;5

=>nó là hợp số

15 tháng 8 2018

mình xin lỗi ấn nhầm bây giờ mk giải tiếp

giải

2) để 5x + 7 là số nguyên tố

=>5x+7 chia hết cho 5x+7 và 1

=>x thuộc (2;6)

3) trả lời 

n.(n+1) là hợp số bởi vì 

nếu n+1 là số lẻ=>n là số chẵn mà chẵn nhân với lẻ lại được số chẵn chia hết cho 2

nếu n+1 là số chẵn =>n là số lẻ mà lẻ nhân chẵn sẽ được số chẵn chia hết cho 2

mình xin lỗi mình chỉ làm dc thế thôi nhé, nếu bạn ko k thi thôi, ko sao

chào bạn

Giúp mình làm đề toán này nhé !Bài 1:Cho biểu thức : A =\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)a) Rút gọn biểu thức b) Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a , là một phân số tối giản.Bài 2 : Tìm tất cả các số tự nhiên có 3 chữ số abc​​ sao cho abc=\(^{n^2-1}\)  và cba = \(\left(n-2\right)^2\)Bài 3:a. Tìm n để \(n^2+2006\) là 1 số chính phương.b.Cho n là số...
Đọc tiếp

Giúp mình làm đề toán này nhé !

Bài 1:

Cho biểu thức : A =\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

a) Rút gọn biểu thức 

b) Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a , là một phân số tối giản.

Bài 2 : 

Tìm tất cả các số tự nhiên có 3 chữ số abc​​ sao cho abc=\(^{n^2-1}\)  và cba = \(\left(n-2\right)^2\)

Bài 3:

a. Tìm n để \(n^2+2006\) là 1 số chính phương.

b.Cho n là số nguyên tố lớn hơn 3 . Hỏi \(n^2+2006\) là số nguyên tố hay là hợp số

Bài 4 : 

a. cho a,b,c  ϵ  N* . Hãy so sánh \(\frac{a+n}{b+n}\) và \(\frac{a}{b}\) 

b.cho A =\(\frac{10^{11}-1}{10^{12}-1}\)    ;     B= \(\frac{10^{10}+1}{10^{11}+1}\) . so sánh A và B.

Bài 5:

cho 10 số tự nhiên bất kì :  \(a_1,a_2,.......,a_{10}^{_{ }}\) . Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.

Bài 6 : 

Cho 2006 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau . Không có ba đường thẳng nào đồng qui . Tính số giao điểm của chúng .

 

Hết rùi đó, giúp mình nha. Làm được Một trong sáu bài đó là được rùi. Thank you.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5
30 tháng 9 2016

Bài 6: 

Công thức tính số giao điểm của n đường thẳng trong đó không có 3 đường thẳng nào đồng qui là\(\frac{n\left(n-1\right)}{2}\) (giao điểm)

Vậy số giao điểm của n đường thẳng trong đó không có 3 đường thẳng nào đồng qui là \(\frac{2006-\left(2006-1\right)}{2}=2011015\left(giaođiểm\right)\)

 

30 tháng 9 2016

Bài 5:

Đặt S1 = a; S2 = a1 + a2  ; S3 = a1 + a2 + a; S10 = a1 + a2 + a3 + ... + a10

Xét 10 số S1, S2,...,S10 có hai trường hợp:

+ Nếu có một số Sk nào đó tận cùng bằng 0 (Sk = a1 + a2 + ... + ak , k từ 1 đến 10) => tổng của k số a1 , a2,...,a\(⋮10\left(đpcm\right)\)

+ Nếu không có số nào trong 10 số S1,S2,...,S10 tận cùng là 0 => chắc chắn phải có ít nhất hai số nào đó có chữ số tận cùng giống nhau. Ta gọi hai số đó là Sm và Sn \(\left(1\le m< n\le10\right)\) 

Sm = a+ a2 + ... + a(m)

Sn = a1 + a2 + ... + a(m) + a(m+1)+ a(m+2) + ... + a(n)

=> S- S= a(m+1) + a(m+2) + ... + a(n) tận cùng là 0

=> Tổng của n - m số a(m+1), a(m+2),..., a(n) \(⋮\) 10 (đpcm)

 

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

Lời giải:

Nếu $n$ là số chẵn. Đặt $n=2k$ ($k$ tự nhiên)

$\Rightarrow 2^n-1=2^{2k}-1=4^k-1=(3+1)^k-1=\text{BS3}+1-1=\text{BS3}$ chia hết cho $3$

Mà $2^n-1>3$ với mọi $n>2$ nên không thể là số nguyên tố.

Do đó $n$ là số lẻ. Đặt $n=2k+1$ với $k$ tự nhiên.

Khi đó: $2^n+1=2^{2k+1}+1=2.4^k+1=2(3+1)^k+1=2(\text{BS3}+1)+1=2\text{BS3}+3=\text{BS3}$

Mà $2^n+1>3$ nên $2^n+1$ là hợp số (đpcm)

Ký hiệu: $\text{BS3}$ là bội số của $3$