\(^n\) - 1 là một số nguyên tố. Chứng tỏ rằ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

Lời giải:

Nếu $n$ là số chẵn. Đặt $n=2k$ ($k$ tự nhiên)

$\Rightarrow 2^n-1=2^{2k}-1=4^k-1=(3+1)^k-1=\text{BS3}+1-1=\text{BS3}$ chia hết cho $3$

Mà $2^n-1>3$ với mọi $n>2$ nên không thể là số nguyên tố.

Do đó $n$ là số lẻ. Đặt $n=2k+1$ với $k$ tự nhiên.

Khi đó: $2^n+1=2^{2k+1}+1=2.4^k+1=2(3+1)^k+1=2(\text{BS3}+1)+1=2\text{BS3}+3=\text{BS3}$

Mà $2^n+1>3$ nên $2^n+1$ là hợp số (đpcm)

Ký hiệu: $\text{BS3}$ là bội số của $3$

23 tháng 11 2014

2) vì abc + def chia hết cho 37 nên : 1000 abc + 1000 def cũng chia hết cho 37 => 1000 abc + def + 999 def cũng chia hết cho 37

mà ta thấy 999def chia hết cho 37 nên (1000 abc + def ) cũng chia hết cho 37 hay abcdef  chia hết cho 37

vậy abcdef là hợp số => ( đpcm ) 

18 tháng 3 2018

Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d. =>n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d. do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết chod hay n^2 +1 chia hết cho d (1). => (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d. => (n^4+3n^2+1) ...

18 tháng 3 2018

Bài 1 : 

Ta có : 

\(\frac{3n-5}{3-2n}=\frac{3n-5}{-\left(2n-3\right)}\)

Gọi \(ƯCLN\left(3n-5;3-2n\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}3n-5⋮d\\-\left(2n-3\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-5\right)⋮d\\-3\left(2n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n-10⋮d\\-6n+9⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(6n-10\right)+\left(-6n+9\right)⋮d\)

\(\Rightarrow\)\(\left(6n-6n\right)\left(-10+9\right)⋮d\)

\(\Rightarrow\)\(\left(-1\right)⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)\)

Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(3n-5;3-2n\right)=\left\{1;-1\right\}\)

Vậy \(\frac{3n-5}{3-2n}\) là phân số tối giản với mọi số nguyên n 

Chúc bạn học tốt ~ 

23 tháng 1 2018

 5n2+1⋮6=>5n2−5⋮6=>(n−1)(n+1)⋮65n2+1⋮6=>5n2−5⋮6=>(n−1)(n+1)⋮6 *

Giả sử n chẵn =>(n−1)(n+1)(n−1)(n+1) không chia hết 2 (trái với *)

=> n nguyên tố với 2 =>\(\frac{n}{2}\) tối giản

Giả sử n chia hết 3 => (n−1)(n+1)(n−1)(n+1) không chia hết 3 (trái với *)

=> n nguyên tố với 3 =>\(\frac{n}{3}\) tối giản

7 tháng 4 2020

Trl :

Bạn kia làm đúng rồi nhé !

Học tốt nhé bạn @

16 tháng 1 2019

Ta có : 2n -1 ; 2n và 2n + 1 là 3 số tự nhiên liên tiếp.

Trong 3 số tự nhiên liên tiếp chắc chắn có 1 số  \(⋮\)3

Mà 2n - 1 là số nguyên tố => 2n + 1 không chia hết cho 3

và 2n ko chia hết cho 3 ( vì 2n là bội của 2 ko chia hết cho 3 và n>2)

=> 2n +1 chia hết cho\(⋮\)3

=> 2n +1 là hợp số 

   => Điều cần chứng minh

16 tháng 1 2019

bn trong doi tuyen ha?