Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
ĐK: \(x\geq 5\)
PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)
2)
ĐK: \(x\geq -1\)
\(\sqrt{x+1}+\sqrt{x+6}=5\)
\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)
\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)
Vì \(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$
\(\Rightarrow x=3\) (thỏa mãn)
Vậy .............
1) Để biểu thức \(\sqrt{-2x}\) có nghĩa thì \(-2x\ge0\Leftrightarrow x\le0\)
2) Để biểu thức \(\sqrt{15x}\) có nghĩa thì \(15x\ge0\Leftrightarrow x\ge0\)
3) Để biểu thức \(\sqrt{2x+1}\) có nghĩa thì \(2x+1\ge0\Leftrightarrow2x\ge-1\Leftrightarrow x\ge\dfrac{-1}{2}\)
4) Để biểu thức \(\sqrt{3-6x}\) có nghĩa thì \(3-6x\ge0\Leftrightarrow6x\le3\Leftrightarrow x\le\dfrac{1}{2}\)
5) Để biểu thức \(\dfrac{1}{2-\sqrt{x}}\) có nghĩa thì \(\left\{{}\begin{matrix}x\ge0\\2-\sqrt{x}\ne0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
6) Để biểu thức \(\dfrac{3}{\sqrt{x^2-1}}\) có nghĩa thì \(x^2-1>0\Leftrightarrow x^2>1\Leftrightarrow\)\(\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)
7) Ta có \(x^2\ge0\Leftrightarrow2x^2\ge0\Leftrightarrow2x^2+3\ge3>0\)
Vậy với mọi x thì biểu thức 2x2+3 luôn được xác định
8) Ta có \(-x^2\le0\Leftrightarrow-x^2-5\le-5< 0\)
Vậy với mọi x thì biểu thức \(\dfrac{5}{\sqrt{-x^2-2}}\) sẽ không xác định
1/ \(x\ge\dfrac{1}{3}\)
2/ \(\forall x\in R\)
3/ \(x\le\dfrac{5}{2}\)
4/ \(x\in\left(-\infty,-\sqrt{2}\right)\cup\left(\sqrt{2},+\infty\right)\)
5/ \(x>2\)
6/ \(x^2-3x+7\ge0\Rightarrow\forall x\in R\)
7/ \(x\ge\dfrac{1}{2}\)
8/ \(x\in\left(-\infty,-3\right)\cup\left(3,+\infty\right)\)
9/ \(\dfrac{x+3}{7-x}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\7-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\\7-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3\le x< 7\\7< x< -3\left(voli\right)\end{matrix}\right.\)
10/ \(\left\{{}\begin{matrix}6x-1\ge0\\x+3\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{6}\\x\ge-3\end{matrix}\right.\Leftrightarrow x\ge\dfrac{1}{6}\)
*Căn thức luôn không âm & mẫu chứa căn luôn dương
1) Để biểu thức \(\sqrt{3x-1}\) có nghĩa thì \(3x-1\ge0\Leftrightarrow3x\ge1\Leftrightarrow x\ge\dfrac{1}{3}\)
2) Ta có \(x^2\ge0\Leftrightarrow x^2+3\ge3>0\)
Vậy với mọi x thì biểu thức \(\sqrt{x^2+3}\) có nghĩa
3) Để biểu thức \(\sqrt{5-2x}\) có nghĩa thì \(5-2x\ge0\Leftrightarrow2x\le5\Leftrightarrow x\le\dfrac{5}{2}\)
4) Để biểu thức \(\sqrt{x^2-2}\) có nghĩa thì \(x^2-2\ge0\Leftrightarrow x^2\ge2\Leftrightarrow\)\(\left[{}\begin{matrix}x\ge\sqrt{2}\\x\le-\sqrt{2}\end{matrix}\right.\)
5) Để biểu thức \(\dfrac{1}{\sqrt{7x-14}}\) có nghĩa thì \(7x-14>0\Leftrightarrow7x>14\Leftrightarrow x>2\)
6) Ta có \(x^2-3x+7=x^2-2x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{19}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}>0\Leftrightarrow x^2-3x+7>0\)
Vậy với mọi x thì \(\sqrt{x^2-3x+7}\) luôn có nghĩa
7) Để biểu thức \(\sqrt{2x-1}\) có nghĩa thì \(2x-1\ge0\Leftrightarrow2x\ge1\Leftrightarrow x\ge\dfrac{1}{2}\)
8) Để biểu thức \(\sqrt{x^2-9}\) có nghĩa thì \(x^2-9\ge0\Leftrightarrow x^2\ge9\Leftrightarrow\)\(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
9) Để biểu thức \(\sqrt{\dfrac{x+3}{7-x}}\) có nghĩa thì \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\7-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3\le0\\7-x< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-3\\x< 7\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-3\\x>7\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(-3\le x< 7\)
10) Để biểu thức \(\sqrt{6x-1}+\sqrt{x+3}\) có nghĩa thì \(\left\{{}\begin{matrix}6x-1\ge0\\x+3\ge0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}6x\ge1\\x\ge-3\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge\dfrac{1}{6}\\x\ge-3\end{matrix}\right.\)\(\Leftrightarrow\)\(x\ge\dfrac{1}{6}\)
@Nguyễn Huy Thắng@Mysterious Person@bảo nam trần@Lightning Farron@Thiên Thảo@Sky SơnTùng
Em xin phép làm bài EZ nhất :)
4,ĐK :\(\forall x\in R\)
Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))
\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)
\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)
\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy ....
Câu 1:
PT \(\Leftrightarrow x^2+3x+8=(x+5)\sqrt{x^2+x+2}\)
\(\Leftrightarrow (x^2+x+2)+2(x+5)-4=(x+5)\sqrt{x^2+x+2}\)
Đặt \(\sqrt{x^2+x+2}=a; x+5=b(a\geq 0)\)
\(PT\Leftrightarrow a^2+2b-4=ba\)
\(\Leftrightarrow (a^2-4)-b(a-2)=0\)
\(\Leftrightarrow (a-2)(a+2-b)=0\Rightarrow \left[\begin{matrix} a=2\\ a+2=b\end{matrix}\right.\)
Nếu \(a=2\Rightarrow x^2+x+2=a^2=4\)
\(\Leftrightarrow x^2+x-2=0\Leftrightarrow (x-1)(x+2)=0\Rightarrow x=1; x=-2\) (đều thỏa mãn)
Nếu \(a+2=b\Leftrightarrow \sqrt{x^2+x+2}+2=x+5\)
\(\Leftrightarrow \sqrt{x^2+x+2}=x+3\)
\(\Rightarrow \left\{\begin{matrix} x+3\geq 0\\ x^2+x+2=(x+3)^2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x+3\geq 0\\ 5x+7=0\end{matrix}\right.\Rightarrow x=\frac{-7}{5}\) (thỏa mãn)
Vậy..........
Câu 2:
ĐKXĐ: \(x\geq 1\) hoặc \(x\leq \frac{1}{2}\)
\(10x^2-9x-8x\sqrt{2x^2-3x+1}+3=0\)
\(\Leftrightarrow 3(2x^2-3x+1)-8x\sqrt{2x^2-3x+1}+4x^2=0\)
Đặt \(\sqrt{2x^2-3x+1}=a(a\geq 0)\)
Khi đó PT \(\Leftrightarrow 3a^2-8xa+4x^2=0\)
\(\Leftrightarrow (a-2x)(3a-2x)=0\) \(\Rightarrow \left[\begin{matrix} a=2x\\ 3a=2x\end{matrix}\right.\)
Nếu \(a=\sqrt{2x^2-3x+1}=2x\Rightarrow \left\{\begin{matrix} x\geq 0\\ 2x^2-3x+1=4x^2\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x\geq 0\\ 2x^2+3x-1=0\end{matrix}\right.\Rightarrow x=\frac{-3+\sqrt{17}}{4}\) (t/m)
Nếu \(3a=3\sqrt{2x^2-3x+1}=2x\Rightarrow \left\{\begin{matrix} x\geq 0\\ 9(2x^2-3x+1)=4x^2\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x\geq 0\\ 14x^2-27x+9=0\end{matrix}\right.\Rightarrow x=\frac{3}{2}; x=\frac{3}{7}\) (t/m)
Vậy...........
1. ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow 4x=\sqrt{(3x+1)^2}$
\(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (4x)^2=(3x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (4x-3x-1)(4x+3x+1)=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (x-1)(7x+1)=0\end{matrix}\right.\Leftrightarrow x=1\)
Vậy $x=1$ là nghiệm của pt.
2. ĐKXĐ: $x\geq -5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x+5}-3\sqrt{5+x}+\frac{4}{3}.\sqrt{9}.\sqrt{x+5}=0$
$\Leftrightarrow 2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=0$
$\Leftrightarrow 3\sqrt{x+5}=0$
$\Leftrightarrow \sqrt{x+5}=0$
$\Leftrightarrow x=-5$
1) Để : \(\sqrt{6x+1}\) xác định thì :
6x + 1 ≥ 0 ⇔ x ≥ \(\dfrac{-1}{6}\)
2) Để : \(\sqrt{\dfrac{-3}{2+x}}\) xác định thì :
\(\dfrac{-3}{2+x}\) ≥ 0 ( x # - 2)
⇔ 2 + x < 0 ⇔ x < - 2
3) Để : \(\sqrt{-8x}\) xác định thì :
-8x ≥ 0 ⇔ x < 0
4) Để : \(\sqrt{4-5x}\) xác định thì :
4 - 5x ≥ 0 ⇔ - 5x ≥ - 4 ⇔ x ≤ 4/5
Còn lại bạn giải tương tự nhé
a, \(-x^2+2x-5=-\left(x^2-2x+5\right)=-\left(x^2-2x+1+4\right)\)
\(=-\left[\left(x-1\right)^2+4\right]\)
do \(\left(x-1\right)^2\ge0=>\left(x-1\right)^2+4\ge4=>-\left[\left(x-1\right)^2+4\right]\le-4< 0\)
Vậy ko tồn tại..........
b, \(-4x^2+8x-13=-4\left(x^2-2x+\dfrac{13}{4}\right)\)
\(=-4\left[x^2-2x+1+\dfrac{9}{4}\right]=-4\left[\left(x-1\right)^2+\dfrac{9}{4}\right]\le-9< 0\)
vậy....
c, \(\dfrac{-2021}{x^2+2}\) do \(x^2+2>2=>\dfrac{-2012}{x^2+2}< -1006< 0\)
vậy,,,,,,,,,,
d, \(-3x^2+6x-4=-3\left(x^2-2x+\dfrac{4}{3}\right)=-3\left(x^2-2x+1+\dfrac{1}{3}\right)\)
\(=-3\left[\left(x-1\right)^2+\dfrac{1}{3}\right]\le-1< 0\)
vậy...