Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có nhận xét sau : |x - y| và (x - y) có cùng tính chẵn lẻ
Mà (x - y) và (x + y) có cùng tính chẵn lẻ nên |x - y| và (x + y) có cùng tính chẵn lẻ
Do đó |x - y| + |y - z| + |z - x| có cùng tính chẵn lẻ với (x+ y) + (y + z) + (z + x)
mà (x+ y) + (y + z) + (z + x) = 2.(x+ y + z) là số chẵn nên |x - y| + |y - z| + |z - x| là số chẵn . Vậy |x - y| + |y - z| + |z - x| = 2013 không xảy ra nhé
Ta có nhận xét sau : |x - y| và (x - y) có cùng tính chẵn lẻ
Mà (x - y) và (x + y) có cùng tính chẵn lẻ nên |x - y| và (x + y) có cùng tính chẵn lẻ
Do đó |x - y| + |y - z| + |z - x| có cùng tính chẵn lẻ với (x+ y) + (y + z) + (z + x)
mà (x+ y) + (y + z) + (z + x) = 2.(x+ y + z) là số chẵn nên |x - y| + |y - z| + |z - x| là số chẵn . Vậy |x - y| + |y - z| + |z - x| = 2013 không xảy ra.
Vì x,y,z là các số nguyên dương
nên áp dụng bất đẳng thức Cauchy ta có :
\(x+y\ge2\sqrt{xy}\)(1)
\(y+z\ge2\sqrt{yz}\)(2)
\(z+x\ge2\sqrt{zx}\)(3)
Nhân (1), (2) và (3) theo vế ta có :
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}\cdot2\sqrt{yz}\cdot2\sqrt{zx}=8\sqrt{xy\cdot yz\cdot zx}=8\sqrt{x^2y^2z^2}=8\left|xyz\right|=8xyz\)
( do x,y,z là các số nguyên dương )
Đẳng thức xảy ra <=> x = y = z
=> đpcm
áp dụng BĐT AM-GM
ta có \(x+y\ge2\sqrt{xy}\)
\(y+z\ge2\sqrt{yz}\)
\(z+x\ge2\sqrt{zx}\)
=>\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow x=y=z\left(ĐPCM\right)}\)
Lời giải:
$2023xy+2024yz+4047xz=2023xy+2024y(-x-y)+4047x(-x-y)$
$=-2024y^2-4047x^2-4048xy$
$=-[4047x^2+2024y^2+4048xy]$
$=-[2024(x^2+y^2+2xy)+2023x^2]=-[2024(x+y)^2+2023x^2]$
Vì $2024(x+y)^2+2023x^2\geq 0$ với mọi $x,y$
$\Rightarrow -[2024(x+y)^2+2023x^2]\leq 0$ với mọi $x,y$
Do đó nó không thể nhận giá trị dương.
(Nó có hơi dài dòng)
Cho 3 số x,y,z thỏa mãn: x/2020=y/2021=z/2022.Chứng minh rằng: (x-z)^3 =
(x-z)^3= (2020 - 2022)^3 = -8
8(x-y)^2.(y-z)= 8(2020 - 2021)^2 . (2021 - 2022) = -8.
Vì (x-z)^3 = -8
8(x-y)^2.(y-z) = -8
==> (x-z)^3 = 8(x-y)^2.(y-z)
Cho x,y,z là các số nguyên tố khác 2 và các số thực a,b,c thỏa mãn dãy tỉ số bằng nhau a-b/x=b-c/y=a-c/z.CMR a=b=c