Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài2:
x4-2x2-3=-m
vế trái có x4-2x2-3=0
bảng
x | -∞ -1 0 1 +∞ |
f'x | - 0 + 0 - 0 + |
fx | -4 -3 -4 |
phương trình có 4 nghiệm khi
-4<-m<-3
=> 3<m<4
a/\(\left(1+i\right)z=\frac{1}{z}\Leftrightarrow z^2\left(1+i\right)=1\Rightarrow z^2=\frac{1}{1+i}=\frac{1}{2}-\frac{1}{2}i\)
\(\Rightarrow\) Phần ảo là \(-\frac{1}{2}\)
b/\(\frac{1}{z}=\frac{1}{2}+\frac{1}{2}i\Rightarrow z=\frac{2}{1+i}\Rightarrow z=1-i\)
Phần ảo là -1
c/ Áp dụng công thức tổng CSN với \(u_1=i\) ; \(q=i\); \(n=100\)
\(i+i^2+...+i^{100}=i.\frac{i^{101}-1}{i-1}=\frac{i^{102}-i}{i-1}=\frac{\left(i^2\right)^{51}-i}{i-1}=\frac{-1-i}{i-1}=i\)
d/ Tương tự câu trên:
\(1+\left(1+i\right)+...+\left(1+i\right)^{20}=1+\left(1+i\right).\frac{\left(1+i\right)^{21}-1}{1+i-1}=-2048+i\)
Theo Viet: \(\left\{{}\begin{matrix}z_1+z_2=2i\\z_1z_2=-1-2i\end{matrix}\right.\)
\(\Rightarrow z_1^3+z_2^3=\left(z_1+z_2\right)\left(z_1^2+z_2^2-z_1z_2\right)=\left(z_1+z_2\right)\left(\left(z_1+z_2\right)^2-3z_1z_1\right)\)
\(=2i\left[\left(2i\right)^2-3\left(-1-2i\right)\right]=2i\left(6i-1\right)=-12-2i\)
Phương Linh Nguyễn Hoàng Bạn vt lại đề đc k ạ ? Sao mà AI vuông góc vs AB đc ạ ?
Tiệm cận đứng là đường thẳng x = 3.
Tiệm cận ngang là đường thẳng y = 1.
Do đó, giao điểm của hai đường tiệm cận là I(3; 1). Thực hiện phép biến đổi:
Ta được
Vì Y = 5/X là hàm số lẻ nên đồ thị (C) của hàm số này có tâm đối xứng là gốc tọa độ I của hệ tọa độ IXY.
Biến đổi vế trái bằng cách nhóm từng bốn số hạng và đặt thừa số chung, ta được
i(1 + i + i 2 + i 3 ) + ... + i 97 (1 + i + i 2 + i 3 )
= (1 + i + i 2 + i 3 )(i + ... + i 97 ) = 0
Vì 1 + i + i 2 + i 3 = 1 + i – 1 – i = 0