Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x 2 – 2x + 3 = 0;
b) x 2 − 2 3 x + 7 = 0;
c) x 2 + 2 3 x + 5 = 0.
a) ta có : \(\left(2+i\sqrt{3}\right)^2=2^2+2.2.i\sqrt{3}+\left(i\sqrt{3}\right)^2\)
\(=4+4\sqrt{3}i-3=1+4\sqrt{3}i\)
b) ta có : \(\left(1+2i\right)^3=1^3+3.1^2.2i+3.1.\left(2i\right)^2+\left(2i\right)^3\)
\(=1+6i-6-8i=-5-2i\)
c) \(\left(3-i\sqrt{2}\right)^3=3^3-3.3^2.i\sqrt{2}+3.3.\left(i\sqrt{2}\right)^2+\left(i\sqrt{2}\right)^3\)
\(=27-27\sqrt{2}i-18-2\sqrt{2}i=9-29\sqrt{2}i\)
d) \(\left(2-i\right)^3=2^3-2.2^2.i+2.2.i^2-i^3\)
\(=8-8i-4+i=4-7i\)
Bài 1:
Đặt \(\left(\frac{3}{2}\right)^x=a\) \((a>0)\)
PT tương đương với:
\(\left(\frac{9}{4}\right)^x-2.\left(\frac{3}{2}\right)^x+m^2=0\)
\(\Leftrightarrow a^2-2a+m^2=0\) (1)
-Trước tiên, để pt đầu tiên có hai nghiệm phân biệt thì (1) cũng phải có hai nghiệm phân biệt \(\rightarrow \) \(\Delta'=1-m^2>0\Leftrightarrow -1< m< 1\)
Áp dụng hệ thức Viete với \(a_1,a_2\) là nghiệm của (1) \(\left\{\begin{matrix} a_1+a_2=2\\ a_1a_2=m^2\end{matrix}\right.\)
-Vì \(a\) luôn dương nên \(\left\{\begin{matrix} a_1+a_2>0\\ a_1a_2>0\end{matrix}\right.\Leftrightarrow m^2>0 \Leftrightarrow m\neq 0\)
-Xét đk cuối cùng, để pt đầu tiên có hai nghiệm trái dấu, tức \(x<0\) hoặc $x>0$ thì \(a<1\) hoặc \(a>1\), hay \((a_1-1)(a_2-1)< 0\)
\(\Leftrightarrow a_1a_2-(a_1+a_2)+1< 0\Leftrightarrow m^2<1\Leftrightarrow -1< m< 1\)
Vậy \(-1< m< 1; m\neq 0\)
Bài 2:
Đặt \(2^x=a\Rightarrow \) \(4^x-2m.2^x+2m=0\) tương đương với:
\(a^2-2ma+2m=0\) (1)
Để pt đầu tiên có hai nghiệm phân biệt thì (1) cũng phải có hai nghiệm phân biệt
\(\Rightarrow \Delta'=m^2-2m>0\Leftrightarrow m< 0\) hoặc $m>2$
Áp dugnj hệ thức viete với $a_1,a_2$ là hai nghiệm của phương trình:
\(a_1a_2=2m\Leftrightarrow 2^{x_1}.2^{x_2}=2m\Leftrightarrow 2^{x_1+x_2}=2m\Leftrightarrow 8=2m\rightarrow m=4\)
(thỏa mãn)
Vậy \(m=4\)
a) ta có : \(\left(1+i\sqrt{2}\right).\left(1-i\sqrt{2}\right)=1-\left(i\sqrt{2}\right)^2=1+2=3\)
và \(\left(1+i\sqrt{2}\right)+\left(1-i\sqrt{2}\right)=2\)
\(\Rightarrow1+i\sqrt{2}\) và \(1-i\sqrt{2}\) là nghiệm của hệ \(x^2-2x+3=0\)
b) ta có : \(\left(\sqrt{3}+2i\right).\left(\sqrt{3}-2i\right)=3-\left(2i\right)^2=3+4=7\)
và \(\left(\sqrt{3}+2i\right)+\left(\sqrt{3}-2i\right)=2\sqrt{3}\)
\(\Rightarrow\sqrt{3}+2i\) và \(\sqrt{3}-2i\) là nghiệm của hệ \(x^2-2\sqrt{3}x+7=0\)
c) ta có : \(\left(-\sqrt{3}+i\sqrt{2}\right).\left(-\sqrt{3}-i\sqrt{2}\right)=3-\left(i\sqrt{2}\right)^2=3+2=5\)
và \(\left(-\sqrt{3}+i\sqrt{2}\right)+\left(-\sqrt{3}-i\sqrt{2}\right)=-2\sqrt{3}\)
\(\Rightarrow-\sqrt{3}+i\sqrt{2}\) và \(-\sqrt{3}-i\sqrt{2}\) là nghiệm của hệ \(x^2+2\sqrt{3}x+5=0\)
giải pt h.độ giao điểm
có nghiệm x = -1 , x=0, x=2
vẽ hình ra , khoảng giới hạn nằm trong khoangt từ -1 ; 0
S = \(\int_{-1}^0\frac{2x}{x-1}-x^2dx\)= (máy tính STO A)
giải hpt 2 ẩn
a + bln2 = A
a + b = (thay đáp án ) giải ra đc đáp án A cho số hữu tỉ, vậy A đúng