K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 10 2019

Lời giải:

\(y=(m-1)x+2m-5, \forall m\)

\(\Leftrightarrow mx-x+2m-5-y=0, \forall m\)

\(\Leftrightarrow m(x+2)-(x+y+5)=0, \forall m\)

\(\Leftrightarrow \left\{\begin{matrix} x+2=0\\ x+y+5=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-2\\ y=-3\end{matrix}\right.\)

Vậy đường thẳng (d) luôn đi qua điểm cố định $(-2;-3)$ với mọi $m$

NV
7 tháng 10 2019

Gọi điểm cố định là \(\left(x_0;y_0\right)\)

\(y_0=\left(m+2\right)x_0+m-1\)

\(\Leftrightarrow\left(x_0+1\right)m+2x_0-y_0-1=0\)

\(\Rightarrow\left\{{}\begin{matrix}x_0+1=0\\2x_0-y_0-1=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-3\end{matrix}\right.\)

Vậy đường thẳng luôn đi qua điểm cố định \(\left(-1;-3\right)\)

5 tháng 12 2023

Giả sử \(A\left(x_0;y_0\right)\) là điểm cố định mà \(y=\left(m-2\right)x+3m-1\) luôn đi qua \(\forall m\)

\(\Rightarrow y_0=\left(m-2\right)x_0+3m-1\)

\(\Leftrightarrow y_0-mx_0+2x_0-3m+1=0\)

\(\Leftrightarrow m\left(x_0+3\right)-y_0-2x_0-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+3=0\\-y_0-2x_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=-5\end{matrix}\right.\)

Vậy với mọi m đường thẳng đã cho luôn đi qua điểm cố định có tọa độ (-3; -5)

5 tháng 12 2023

Gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)

Theo đề bài, ta có:

\(y_0=\left(m-2\right)x_0+3m-1\) với mọi m

\(\Leftrightarrow\left(x_0+3\right)m-2x_0-y_0-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\2x_0+y_0+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=5\end{matrix}\right.\)

Vậy đường thẳng đã cho luôn đi qua điểm \(M\left(-3;5\right)\) cố định.

1 tháng 12 2017

Gọi N( \(x_0,y_0\)) là điểm cố định mà đường thẳng y=\(\left(m-2\right)x+5-2m\) luôn đi qua khi m thay đổi.

\(\Rightarrow y_0=\left(m-2\right)x_0+5-2m\) ( đúng \(\forall m\))

\(\Rightarrow m\left(x_0-2\right)+5-2x_0-y_0=0\) ( đúng \(\forall m\))

\(\Rightarrow\left\{{}\begin{matrix}x_0-2=0\\5-2x_0-y_0=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_0=2\\y_0=1\end{matrix}\right.\)

Vậy N \(\left(2,1\right)\) là điểm cố định mà đường thẳng \(y=\left(m-2\right)x+5-2m\) luôn đi qua khi m thay đổi.

28 tháng 1 2021

 Gọi \(M\left(x_o;y_o\right)\) là điểm cố định mà đường thẳng \(\left(dm\right):y=mx-2m+1\) luôn đi qua 

\(\Leftrightarrow y_o=mx_o+2m+1\)

\(\Leftrightarrow m\left(x_o+2\right)+1-y_o=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_o+2=0\\1-y_o=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_o=-2\\y_o=1\end{matrix}\right.\)

\(\Leftrightarrow M\left(-2;1\right)\) là điểm cố định mà đường thẳng \(\left(dm\right)\) luôn đi qua \(\left(đpcm\right)\)

NV
18 tháng 8 2021

Giả sử d đi qua điểm cố định có tọa độ \(\left(x_0;y_0\right)\)

\(\Rightarrow\) Với mọi m ta có:

\(y_0=\left(m+1\right)x_0-3m+4\)

\(\Leftrightarrow m\left(x_0-3\right)+x_0-y_0+4=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0-3=0\\x_0-y_0+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=3\\y_0=7\end{matrix}\right.\)

Vậy với mọi m thì đường thẳng luôn đi qua điểm cố định có tọa độ \(\left(3;7\right)\)

NV
14 tháng 9 2021

Chắc hàm là \(y=\left(m+1\right)x+m-1\)

Giả sử đường thẳng d đi qua điểm cố định có tọa độ \(A\left(x_0;y_0\right)\), khi đó với mọi m ta luôn có:

\(y_0=\left(m+1\right)x_0+m-1\)

\(\Leftrightarrow m\left(x_0+1\right)+x_0-y_0-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\x_0-y_0-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-2\end{matrix}\right.\)

Vậy khi m thay đổi thì d luôn đi qua điểm cố định có tọa độ \(\left(-1;-2\right)\)

21 tháng 9 2021

cho (d) ; y=(m-1)x+m-3 gọi A ,B là giao điểm của (d) và ox,oy . tìm m để tam giác OAB cân                              giúp e vs