\(a^{^{ }}x^2+\left(a-1\right)x+6a\) luôn đi qua 2 điểm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2016

Toán lớp 9.

10 tháng 4 2017

a)

y(1) =a-4+c=\(-2\)\(\Rightarrow\) a+c=2

y(2)=4a-8+c=3 \(\Rightarrow\)4a+c=3

Trừ cho nhau\(\Rightarrow\)3a=1 \(\Rightarrow\)a=\(\dfrac{1}{3}\)\(\Rightarrow\)  \(c=2-\dfrac{1}{3}=\dfrac{5}{3}\).

Vậy: \(y=\dfrac{1}{3}x^2-4x+\dfrac{5}{3}\).

b)

I(-2;1)\(\Rightarrow\dfrac{4}{2a}=-2\)\(\Leftrightarrow a=-1\).

y(-2) \(=-4+8+c=1\)\(\Rightarrow\) \(c=-3\)

Vậy: \(y=-x^2-4x-3\).

c)\(\dfrac{4}{2a}=-3\)\(\Leftrightarrow a=-\dfrac{2}{3}\)
\(y\left(-2\right)=-\dfrac{2}{3}.4+8+c=1\)\(\Leftrightarrow c=-\dfrac{13}{3}\)
Vậy: \(y=-\dfrac{2}{3}x^3-4x-\dfrac{13}{3}\).

9 tháng 4 2017

a, \(\left(Cm\right)\) có tâm I(m;-2m)luôn thuộc đường thẳng (d) 2x+y=0 và có bán kính R=1

Vậy \(\left(Cm\right)\) luôn tiếp xúc với đường thẳng cố định, đó là tiếp tuyến của\(\left(Cm\right)\) song song với (d)

b,\(0< |m|< \dfrac{2}{\sqrt{5}}\)

14 tháng 4 2020

câu a có đường thẳng d

30 tháng 11 2023

Sửa đề: \(y=\left(1+m\right)x^2-2\left(m-1\right)x+m-3\)

\(=x^2+mx^2+\left(-2m+2\right)x+m-3\)

\(=x^2+mx^2-2mx+2x+m-3\)

\(=m\left(x^2-2x+1\right)+x^2+2x-3\)

\(=m\left(x-1\right)^2+x^2+2x-3\)

Tọa độ điểm mà (Pm) luôn đi qua là:

\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y=x^2+2x-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-1=0\\y=x^2+2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1+2-3=0\end{matrix}\right.\)

(P): \(y=\left(1+m\right)x^2-2\left(m-1\right)x+m-3\)

\(=x^2+mx^2-2mx+2x+m-3\)

\(=m\left(x^2-2x+1\right)+x^2+2x-3\)

\(=m\left(x-1\right)^2+x^2+2x-3\)

Tọa độ điểm cố định mà (Pm) luôn đi qua là:

\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y=x^2+2x-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-1=0\\y=x^2+2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1+2-3=0\end{matrix}\right.\)

NV
6 tháng 10 2020

\(y\left(x+m+2\right)=mx-x+m+2\)

\(\Leftrightarrow\left(xy+2y+x-2\right)+m\left(y-x-1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}y-x-1=0\\xy+2y+x-2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=x+1\\xy+2y+x-2=0\end{matrix}\right.\)

\(\Rightarrow x\left(x+1\right)+2\left(x+1\right)+x-2=0\)

\(\Leftrightarrow x^2+4x=0\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\x=-4\Rightarrow y=-3\end{matrix}\right.\)

Vậy đồ thị đi qua 2 điểm: \(A\left(0;1\right);B\left(-4;-3\right)\)

17 tháng 5 2017

Để xác định các hệ số a và b ta dựa vào tọa độ các điểm mà đồ thị đi qua, lập hệ phương trình có hai ẩn a và b

a) Vì đồ thị đi qua \(A\left(\dfrac{2}{3};-2\right)\) nên ta có phương trình \(a.\dfrac{2}{3}+b=-2\)

Tương tự, dựa vào tọa độ của \(B\left(0;1\right)\) ta có \(0+b=1\)

Vậy, ta có hệ phương trình :

\(\left\{{}\begin{matrix}\dfrac{2a}{b}+b=-2\\b=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{9}{2}\\b=1\end{matrix}\right.\)

b) \(a=0;b=-2\)

c) \(a=\dfrac{1}{3};b=\dfrac{2}{3}\)