\(y=\left(m+5\right)x+2m-10\)

a) Chứng minh rằng đồ thị của hàm...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2015

a) Với \(x\in\left[0;1\right]\) => x  - 2 < 0 => |x - 2| = - (x -2)

Khi đó, \(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)

Để f(x) < 0 với mọi \(x\in\left[0;1\right]\) <=> \(2\left(m-1\right)x-m<0\)  (*)  với mọi \(x\in\left[0;1\right]\)

+) Xét m - 1 > 0 <=> m > 1 

(*) <=> \(x<\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\ge1\) <=> 2(m -1) \(\le\)m <=> m \(\le\) 2 <=> m \(\le\) 2

Kết hợp điều kiện m > 1 =>1 <  m \(\le\) 2

+) Xét m = 1 thì (*) <=> -1 < 0 luôn đúng => m =1 thỏa mãn

+) Xét m - 1 < 0 <=> m < 1

(*) <=> \(x>\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\le0\) <=> m \(\ge\) 0 (do m< 1 ). Kết hợp m < 1 => 0 \(\le\) m < 1

Kết hợp các trường hợp : Với  0 \(\le\)\(\le\) 2 thì .....

b)  Hoành độ giao điểm của đò thị hàm số với Ox là nghiệm của Phương trình : \(2\left(m-1\right)x+\frac{m\left(x-2\right)}{\left|x-2\right|}=0\) (1)

Đồ thị hàm số cắt Ox tại điểm có hoành độ xo thuộc (1;2) => x< 2 => |x- 2| = - (x- 2)

xo là nghiệm của (1) <=> \(2\left(m-1\right)x_o+\frac{m\left(x_o-2\right)}{\left|x_o-2\right|}=0\) <=> \(2\left(m-1\right)x_o-m=0\) 

+) Xét m \(\ne\) 1 thì (2)<=> \(x_o=\frac{m}{2\left(m-1\right)}\). Vì 1 < x< 2 nên \(1<\frac{m}{2\left(m-1\right)}<2\) <=> \(\begin{cases}\frac{m}{2\left(m-1\right)}-1>0\\\frac{m}{2\left(m-1\right)}-2<0\end{cases}\) <=> \(\begin{cases}\frac{-m+2}{2\left(m-1\right)}>0\left(a\right)\\\frac{-3m+4}{2\left(m-1\right)}<0\left(b\right)\end{cases}\) 

Giải (a) <=> 1 < m < 2

Giải (b) <=> m < 1 hoặc m > 4/3

Kết hợp nghiệm của (a) và (b) => 4/3 < m < 2

+) Xét m = 1 thì (2) <=> -1 = 0 Vô lí

Vậy Với 4/3 < m < 2 thì đồ thị hàm số cắt Ox tại điểm thuộc (1;2)

 

7 tháng 12 2016

Toán lớp 9.

19 tháng 1 2016

Khi m = 2 : y = x + 5

TXĐ : D = R.

Tính biến thiên :

  • a = 1 > 0 hàm số đồng biến trên R.

bảng biến thiên :

x

-∞

 

+∞

y

-∞

+∞

Bảng giá trị :

x

0

-5

y

5

0

Đồ thị hàm số y = x + 5 là đường thẳng đi qua hai điểm A(0, 5) và B(-5; 0).

b/(dm) đi qua điểm A(4, -1) :

4 = (m -1)(-1) +2m +1

<=> m = 2

3. hàm số nghịch biến khi : a = m – 1 < 0 <=> m < 1

4.(dm) đi qua điểm  cố định M(x0, y0) :

Ta được  : y0 = (m -1)( x0) +2m +1 luôn đúng mọi m.

<=> (x0 + 2) m = y0 – 1 + x0(*)

(*) luôn đúng mọi m khi :

x0 + 2= 0 và  y0 – 1  + x0 = 0

<=> x0 =- 2  và  y0 = 3

Vậy : điểm  cố định M(-2, 3)

 

21 tháng 11 2023

Phương trình hoành độ giao điểm là:

\(x^2+\left(2m-3\right)x+5-4m=2mx-4m+3\)

=>\(x^2+\left(2m-3\right)x+5-4m-2mx+4m-3=0\)

=>\(x^2+x\left(2m-3-2m\right)+5-4m+4m-3=0\)

=>\(x^2-3x+2=0\)

=>\(\left(x-1\right)\left(x-2\right)=0\)

=>\(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Khi x=1 thì \(y=2m\cdot1-4m+3=2m-4m+3=-2m+3\)

Khi x=2 thì \(y=2m\cdot2-4m+3=3\)

Vậy: (dm) và (P) luôn cắt nhau tại điểm A(2;3) cố định

31 tháng 8 2019

Đáp án C

2 tháng 4 2017

a) Điểm A(x0;y0) thuộc đồ thị (G) của hàm số y = f(x) có tập xác định D khi và chỉ khi:

Tập xác định của hàm số y = 3x2 – 2x + 1 là D = R.

Ta có : -1 ∈ R, f(- 1) = 3(- 1)2 – 2(- 1) + 1 = 6

Vậy điểm M(- 1;6) thuộc đồ thị hàm số đã cho.

b) Ta có: 1 ∈ R, f(1) = 3 (1)2 – 2(1) + 1 = 2 ≠ 1.

Vậy N(1;1) không thuộc đồ thị đã cho.

c) P(0;1) thuộc đồ thị đã cho.