\(\dfrac{k}{n.\left(n+k\right)}=\dfrac{1}{n}-\dfrac{1}{n+k}\left(n;kEN^{\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2021

\(\dfrac{1}{n}-\dfrac{1}{n+k}=\dfrac{n+k}{n\left(n+k\right)}-\dfrac{n}{n\left(n+k\right)}=\dfrac{n+k-n}{n\left(n+k\right)}=\dfrac{k}{n\left(n+k\right)}\)

\(\dfrac{k}{n\cdot\left(n+k\right)}=\dfrac{n+k-n}{n\left(n+k\right)}=\dfrac{1}{n}-\dfrac{1}{n+k}\)(đpcm)

28 tháng 3 2017

Đặt :

\(A=\dfrac{3}{9.14}+\dfrac{3}{14.19}+......................+\dfrac{3}{\left(5n-1\right)\left(5n+4\right)}\)

\(A.\dfrac{5}{3}=\dfrac{5}{9.14}+\dfrac{5}{14.19}+..................+\dfrac{5}{\left(5n-1\right)\left(5n+1\right)}\)

\(A.\dfrac{5}{3}=\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+..................+\dfrac{1}{5n-1}-\dfrac{1}{5n+4}\)

\(A.\dfrac{5}{3}=\dfrac{1}{9}-\dfrac{1}{5n+4}\)

\(A=\left(\dfrac{1}{9}-\dfrac{1}{5n+4}\right):\dfrac{3}{5}\)

\(A=\left(\dfrac{1}{9}-\dfrac{1}{5n+\text{4}}\right).\dfrac{3}{5}\)

\(A=\dfrac{1}{9}.\dfrac{3}{5}-\dfrac{1}{5n+4}.\dfrac{3}{5}\)

\(A=\dfrac{1}{15}-\dfrac{1}{5.\left(5n+4\right)}\)

\(\Rightarrow A< \dfrac{1}{15}\)

\(\Rightarrowđpcm\)

Chúc bn học tốt!!!!!!!!!!

21 tháng 7 2017

a, b, c là ba số nguyên tố khác nhau.

Ta có [a, b]= a.b, [b, c]= b.c, [c.a]= c.a

Do đó \(\dfrac{1}{\left[a,b\right]}+\dfrac{1}{\left[b,c\right]}+\dfrac{1}{[c,a]}=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\)

Ta có: \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\le\dfrac{1}{2.3}+\dfrac{1}{3.5}+\dfrac{1}{5.2}\)

mả \(\dfrac{1}{2.3}+\dfrac{1}{3.5}+\dfrac{1}{5.2}=\dfrac{5+2+3}{30}=\dfrac{1}{3}\).

Do đó \(\dfrac{1}{\left[a,b\right]}+\dfrac{1}{\left[b,c\right]}+\dfrac{1}{\left[c,a\right]}\le\dfrac{1}{3}\).

Tính giá trị biểu thức : 1. \(A=\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}\) 2. \(B=\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\) 3. \(C=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4\cdot6}\cdot\dfrac{5^2}{4\cdot6}\) 4. \(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right)\cdot\left(\dfrac{2}{3}\cdot\dfrac{1}{4}\right)^2\) 5....
Đọc tiếp

Tính giá trị biểu thức :

1. \(A=\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}\)

2. \(B=\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)

3. \(C=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4\cdot6}\cdot\dfrac{5^2}{4\cdot6}\)

4. \(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right)\cdot\left(\dfrac{2}{3}\cdot\dfrac{1}{4}\right)^2\)

5. Cho \(M=8\dfrac{2}{7}-\left(3\dfrac{4}{9}+4\dfrac{2}{7}\right)\) ; \(N=\left(10\dfrac{2}{9}+2\dfrac{3}{5}\right)-6\dfrac{2}{9}\). Tính \(P=M-N\)

6. \(E=10101\left(\dfrac{5}{111111}+\dfrac{5}{222222}-\dfrac{4}{3\cdot7\cdot11\cdot13\cdot37}\right)\)

7. \(F=\dfrac{\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{256}+\dfrac{3}{64}}{1-\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

8. \(G=\text{[}\dfrac{\left(6-4\dfrac{1}{2}\right):0,03}{\left(3\dfrac{1}{20}-2,65\right)\cdot4+\dfrac{2}{5}}-\dfrac{\left(0,3-\dfrac{3}{20}\right)\cdot1\dfrac{1}{2}}{\left(1,88+2\dfrac{3}{25}\right)\cdot\dfrac{1}{80}}\text{]}:\dfrac{49}{60}\)

9. \(H=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{4\cdot5\cdot6}+...+\dfrac{1}{98\cdot99\cdot100}\)

10. \(I=\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot...\cdot\dfrac{2499}{2500}\)

11. \(K=\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{999}\right)\)

12. \(L=1\dfrac{1}{3}+1\dfrac{1}{8}+1\dfrac{1}{15}...\) (98 thừa số)

13. \(M=-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{3}}}}\)

14. \(N=\dfrac{155-\dfrac{10}{7}-\dfrac{5}{11}+\dfrac{5}{23}}{403-\dfrac{26}{7}-\dfrac{13}{11}+\dfrac{13}{23}}\)

15. \(P=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{5}-1\right)...\left(\dfrac{1}{2001}-1\right)\)

16. \(Q=\left(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2005\cdot2006}\right):\left(\dfrac{1}{1004\cdot2006}+\dfrac{1}{1005\cdot2005}+...+\dfrac{1}{2006\cdot1004}\right)\)

2
27 tháng 11 2017

1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)

2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)

3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)

4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)

29 tháng 4 2022

hôi lì sít

22 tháng 3 2017

Ta có:

\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\\ =k\left(k+1\right)\left[\left(k-2\right)-\left(k-1\right)\right]\\ =k\left(k+1\right)\left[k-2-k+1\right]\\ =k\left(k+1\right)\left\{\left[k+\left(-k\right)\right]+\left(2+1\right)\right\}\\ =k\left(k+1\right).3\\ =3.k\left(k+1\right)\)

Vậy \(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\\ =3.k.\left(k+1\right)\)

22 tháng 3 2017

Ta có:

\(VT=k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\)

\(=k\left(k+1\right)\left[\left(k+2\right)-\left(k-1\right)\right]\)

\(=k\left(k+1\right)\left[k+2-k+1\right]\)

\(=k\left(k+1\right)\left[\left(k-k\right)+\left(2+1\right)\right]\)

\(=k\left(k+1\right).3\)

\(=3k\left(k+1\right)\)

\(\Rightarrow VT=VP\)

Vậy với \(k\in N\)* thì ta luôn có:

\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\) (Đpcm)

13 tháng 3 2017

Ta có:

\(\frac{1}{n}-\frac{1}{n+2}=\frac{n+2}{n\left(n+2\right)}-\frac{n}{n\left(n+2\right)}=\frac{n+2-n}{n\left(n+2\right)}=\frac{2}{n\left(n+2\right)}\)

\(\Rightarrow\frac{2}{n\left(n+2\right)}=\frac{1}{n}-\frac{1}{n+2}\)

1 tháng 4 2017

\(\dfrac{1}{1\cdot6}+\dfrac{1}{6\cdot11}+\dfrac{1}{11\cdot16}+...+\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}=\dfrac{n+1}{5n+6}\)

\(VT=\dfrac{1}{5}\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{\left(5n+1\right)\left(5n+6\right)}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{5n+6}\right)\)\(=\dfrac{1}{5}\cdot\left(\dfrac{5n+6}{5n+6}-\dfrac{1}{5n+6}\right)\)

\(=\dfrac{1}{5}\cdot\dfrac{5\left(n+1\right)}{5n+6}=\dfrac{n+1}{5n+6}=VP\)

1 tháng 4 2017

Thank bn nhiều nha, nhưng mà cho mk hs Vp=? vậy ạ.ngaingung

17 tháng 3 2017

kệ!! cái loại người chỉ dc cá mách lẻo là ko ai bằng! ra kia cho người khác trả lời câu hỏi!! chắn đường chắn lối tốn cả diện tích!!

17 tháng 3 2017

Ra chỗ khác ngay!!

26 tháng 3 2017

N=(3/4).(8/9).(9/10)...(224/225)

N=(3/4).(8.9.10...224)/(9.10.11...225)

N=(3/4).(8/225)

N=2/75