\(\dfrac{3}{1^2\text{x }2^2}+\dfrac{5}{2^2\text{x }3^2}+\dfrac{7}{3^2\tex...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
18 tháng 7 2022

\(\dfrac{3}{1^2x2^2}+\dfrac{5}{2^2x3^2}+\dfrac{7}{3^2x4^2}+...+\dfrac{19}{9^2x10^2}\\ =\dfrac{2^2}{1^2x2^2}-\dfrac{1^2}{1^2x2^2}+\dfrac{3^2}{2^2x3^2}-\dfrac{2^2}{2^2x3^2}+\dfrac{4^2}{3^2x4^2}-\dfrac{3^2}{3^2x4^2}+...+\dfrac{10^2}{9^2x10^2}-\dfrac{9^2}{9^2x10^2}\\ =\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\\ =1-\dfrac{1}{10^2}< 1\\ =>DPCM\)

18 tháng 7 2022

helppppp

20 tháng 7 2017

3a)Vì A là số nguyên

=>\(3n+9⋮n-4=>3n-12+21⋮n-4=>3.\left(n-4\right)+21⋮n-4\)

\(\text{3 . (n - 4)}⋮n-4\)

=>\(21⋮n-4=>n-4\inƯ\left(21\right)=\left\{-21;-7;-3;-1;1;3;7;21\right\}\)

(Vì n là số nguyên => n - 4 là 1 số nguyên)

=>\(n\in\left\{-17;-3;1;3;5;9;11;25\right\}\)

Ta có bảng sau:

n -17 -3 1 3 5 9 11 25
3n + 9 -42 0 12 18 24 36 42 84
n - 4 -21 -7 -3 -1 1 3 7 21
\(A=\dfrac{3n+9}{n-4}\) 2 0 -4 -18 24 12 6 4

Vậy.....

b)Vì B là số nguyên

=>\(2n-1⋮n+5=>2n+10-11⋮n+5=>2\left(n+5\right)-11⋮n+5\)

\(\text{2 ( n + 5)}⋮n+5\)

=>\(11⋮n+5=>n+5\in\left\{-11;-1;1;11\right\}\)

(Vì n là số nguyên=> n + 5 là số nguyên)

=> \(n\in\left\{-16;-6;-4;6\right\}\)

Ta có bảng sau:

n -16 -6 -4 6
2 n - 1 -33 -13 -9 11
n + 5 -11 -1 1 11
\(B=\dfrac{2n-1}{n+5}\) 3 13 -9

1

Vậy.......

20 tháng 7 2017

Bài 6 cậu chép đúng đề bài chứ??

13 tháng 8 2018

a)\(\sqrt{x}=4\Leftrightarrow x=4^2\Leftrightarrow x=16\)

b)\(\sqrt{x-2}=3\Leftrightarrow x-2=3^2\Leftrightarrow x=9-2=7\)

c)\(\sqrt{\dfrac{x}{3}-\dfrac{7}{6}}=\dfrac{1}{6}\Leftrightarrow\dfrac{x}{3}-\dfrac{7}{6}=\dfrac{1}{36}\Leftrightarrow\dfrac{x}{3}=-\dfrac{41}{36}\Leftrightarrow x=-\dfrac{41}{12}\)

d)\(x^2=7vớix< 0\)

\(\Leftrightarrow\left(-x\right)^2=7\Leftrightarrow-x=\sqrt{7}\Leftrightarrow x=-\sqrt{7}\)

e)\(x^2-4=0với>0\)

\(\Leftrightarrow x^2=4\Leftrightarrow x=\sqrt{4}=2\)

f)\(\left(2x+7\sqrt{7}\right)^2=7\)

\(\Leftrightarrow4x^2+\sqrt{5488}+343=7\)

\(\Leftrightarrow4x^2+\sqrt{5488}=-336\)

\(\Leftrightarrow4x^2=28\left(12-\sqrt{7}\right)\Leftrightarrow x^2=\dfrac{28\left(12-\sqrt{7}\right)}{4}=7\left(12-\sqrt{7}\right)\)

\(\Leftrightarrow x=\sqrt{7\left(12-\sqrt{7}\right)}=\sqrt{84-7\sqrt{7}}\)

13 tháng 8 2018

a) \(\sqrt{x}=4\Rightarrow x=16\)

b) \(\sqrt{x-2}-3\\ \Rightarrow x-2=9\\ \Rightarrow x=11\)

c) \(x^2=7\\ \Rightarrow x=\pm\sqrt{7}\\ Vớix< 0\Rightarrow x=-\sqrt{7}\)

d) \(x^2-4=0\\\Rightarrow x=\pm2\\ Vớix>0\Rightarrow x=2 \)

6 tháng 8 2018

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Theo tính chất của dãy tỉ số bằng nhau, có:

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8x+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{y}{12}\\\dfrac{x}{6}=\dfrac{z}{12}\\\dfrac{y}{6}=\dfrac{z}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{x}{2}=\dfrac{z}{4}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)

Kết luận ...

b: \(\left(\dfrac{2}{5}-\dfrac{7}{10}x\right):\dfrac{5}{3}=-\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{2}{5}-\dfrac{7}{10}x=\dfrac{-3}{4}\cdot\dfrac{5}{3}=\dfrac{-5}{4}\)

\(\Leftrightarrow x\cdot\dfrac{7}{10}=\dfrac{2}{5}+\dfrac{5}{4}=\dfrac{8+25}{20}=\dfrac{33}{20}\)

\(\Leftrightarrow x=\dfrac{33}{20}:\dfrac{7}{10}=\dfrac{33}{20}\cdot\dfrac{10}{7}=\dfrac{33}{14}\)

c: \(\dfrac{7}{16}:\left(\dfrac{1}{4}x+\dfrac{9}{2}\right)-\dfrac{11}{6}=0\)

\(\Leftrightarrow\dfrac{7}{16}:\left(\dfrac{1}{4}x+\dfrac{9}{2}\right)=\dfrac{11}{6}\)

\(\Leftrightarrow x\cdot\dfrac{1}{4}+\dfrac{9}{2}=\dfrac{11}{6}:\dfrac{7}{16}=\dfrac{88}{21}\)

\(\Leftrightarrow x\cdot\dfrac{1}{4}=\dfrac{88}{21}-\dfrac{9}{2}=-\dfrac{13}{42}\)

hay \(x=-\dfrac{26}{21}\)

26 tháng 9 2017

\(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{4}\right|=4x\)

\(\left\{{}\begin{matrix}\left|x+\dfrac{1}{2}\right|\ge0\\\left|x+\dfrac{1}{3}\right|\ge0\\\left|x+\dfrac{1}{4}\right|\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{4}\right|\ge0\)

\(\Leftrightarrow4x\ge0\)

\(\Leftrightarrow x+\dfrac{1}{2}+x+\dfrac{1}{3}+x+\dfrac{1}{4}=4x\)

\(\Leftrightarrow3x+1=4x\)

\(\Leftrightarrow x=1\left(tm\right)\)

Vậy ..

26 tháng 9 2017

\(\dfrac{1}{2}\)| \(\dfrac{1}{3}x\)- \(\dfrac{1}{4}\)| - \(\dfrac{1}{5}\)= \(\dfrac{1}{6}\)

=> \(\dfrac{1}{2}\)| \(\dfrac{1}{3}x\) - \(\dfrac{1}{4}\)| = \(\dfrac{11}{30}\)

=> | \(\dfrac{1}{3}x\)- \(\dfrac{1}{4}\)| = \(\dfrac{11}{15}\)

=> \(\left[{}\begin{matrix}\dfrac{1}{3}x-\dfrac{1}{4}=\dfrac{11}{15}\\\dfrac{1}{3}x-\dfrac{1}{4}=\dfrac{-11}{15}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\dfrac{1}{3}x=\dfrac{59}{60}\\\dfrac{1}{3}x=\dfrac{-29}{60}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\dfrac{59}{20}\\x=\dfrac{-29}{20}\end{matrix}\right.\)

Chúc bạn học tốt !

26 tháng 9 2017

Tích mình , mình làm nhé! hihahehe

17 tháng 7 2017

bài 1) ta có : \(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Leftrightarrow2\left(x+y\right)=3\left(2x-y\right)\)

\(\Leftrightarrow2x+2y=6x-3y\Leftrightarrow4x=5y\Leftrightarrow\dfrac{x}{y}=\dfrac{5}{4}\)

vậy \(\dfrac{x}{y}=\dfrac{5}{4}\)

18 tháng 7 2017

bài 1

\(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Leftrightarrow\dfrac{2.\dfrac{x}{y}-1}{\dfrac{x}{y}+1}=\dfrac{2.\dfrac{x}{y}+2-3}{\dfrac{x}{y}+1}=2-\dfrac{3}{\dfrac{x}{y}+1}=\dfrac{2}{3}\)

\(2-\dfrac{2}{3}=\dfrac{4}{3}=\dfrac{3}{\dfrac{x}{y}+1}\)

\(\left(\dfrac{x}{y}+1\right)=\dfrac{9}{4}\Rightarrow\dfrac{x}{y}=\dfrac{9}{4}-\dfrac{4}{4}=\dfrac{5}{4}\)

22 tháng 7 2017

gianroi