Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{4.5}< \frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{5.6}< \frac{1}{5^2}< \frac{1}{4.5}\)
.......
\(\frac{1}{99.100}< \frac{1}{99^2}< \frac{1}{98.99}\)
\(\frac{1}{101.100}< \frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}+\frac{1}{101.100}< A< \frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(\frac{1}{4}-\frac{1}{101}< A< \frac{1}{3}-\frac{1}{100}\Rightarrow\frac{97}{404}< A< \frac{97}{300}\)
=> A không phải là số tự nhiên ( đpcm )
Sara Crewe copy Lê Song Thanh Nhã vì baj Lê Song Thanh Nhã làm trước có in chữ đen Sara Crewe tìm cách làm cho khít hàng lại để ko bj phát hjen
A = (1 + 1/4) + (1 + 1/9) + (1 + 1/16) + ... + (1 + 1/2500) (có 49 tổng)
= 49 + 1/(2^2) + 1/(3)^2 + ... + 1/(50)^2
nhỏ hơn: 49 + 1/1.2 + 1/2.3 + ... + 1/49.50 = 49 + 1 - 1/50 = 50 - 1/50 nhỏ hơn 50
mà A lớn hơn 49
=> A không là số nguyên
Học Tốt !
Thay \(a+b+c\) vào \(A\) ta được:
\(A=\frac{a}{2017-c}+\frac{b}{2017-a}+\frac{c}{2017-b}\)
\(=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)
\(=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}\)
Ta có:
\(\frac{a}{a+b}< \frac{a+b}{a+b+c}\)
\(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)
\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng vế với vế ta được:
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}\)\(=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow A< 2\left(1\right)\)
Lại có:
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
Cộng vế với vế ta lại được:
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)\(=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow A>1\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow1< A< 2\)
Vậy \(A\) không phải là số nguyên (Đpcm)
cái này chứng minh 1 < A < 2. mình chỉ bít chứng minh 1 < A thui
Ta có \(\frac{a}{2017-c}>\frac{a}{2017};\frac{b}{2017-a}>\frac{b}{2017};\frac{c}{2017-b}>\frac{c}{2017}\)
suy ra \(A>\frac{a}{2017}+\frac{b}{2017}+\frac{c}{2017}=\frac{2017}{2017}=1\)
=> A > 1
Ta thấy dãy số trên khi quy đồng mẫu số chứa lũy thừa của 3 với số mũ lớn nhất là 34 => khi quy đồng mẫu số, các phân số đều có tử chia hết cho 3 chỉ có phân số 1/81 có tử không chia hết cho 3
=> S có tử không chia hết cho 3, mẫu chia hết cho 3, không là số tự nhiên (đpcm)
bài này còn có 1 vài cách nữa nhưng nó hơi dài nên mk lm cách này