Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
@Lê Quang Cường bạn đã làm bài đâu mà đòi k, phải có đáp án đúng thì mới đc k chứ :|
Ta có : \(\frac{1}{4.5}< \frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{5.6}< \frac{1}{5^2}< \frac{1}{4.5}\)
.......
\(\frac{1}{99.100}< \frac{1}{99^2}< \frac{1}{98.99}\)
\(\frac{1}{101.100}< \frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}+\frac{1}{101.100}< A< \frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(\frac{1}{4}-\frac{1}{101}< A< \frac{1}{3}-\frac{1}{100}\Rightarrow\frac{97}{404}< A< \frac{97}{300}\)
=> A không phải là số tự nhiên ( đpcm )
Ta có :
Thay \(a+b+c=2016\) vào A ta có :
\(A=\frac{a}{2016-c}+\frac{b}{2016-a}+\frac{c}{2016-b}\)
\(A=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\)\(A>1\)\(\left(1\right)\)
Lại có :
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow\)\(A< 2\)\(\left(2\right)\)
Từ (1) và (2) suy ra : \(1< A< 2\)
Vậy A không phải là số nguyên
Chúc bạn học tốt ~
Ta có:
\(A=\frac{a}{2016-c}+\frac{b}{2016-a}+\frac{c}{2016-b}\)
\(A=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}\)
tự làm tiếp nhé!
1b) Ta có: \(\frac{x}{3}\) = \(\frac{y}{4}\) => \(\frac{x}{15}\) = \(\frac{y}{20}\)
\(\frac{y}{5}\) = \(\frac{z}{6}\) => \(\frac{y}{20}\) = \(\frac{z}{24}\)
=> \(\frac{x}{15}\) = \(\frac{y}{20}\) = \(\frac{z}{24}\)
Đặt \(\frac{x}{15}\) = \(\frac{y}{20}\) = \(\frac{z}{24}\) = k
=> x = 15k; y = 20k và z = 24k
Thay vào A ta có:
A = \(\frac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}\)
=> A = \(\frac{30k+60k+96k}{45k+80k+120k}\)
=> A = \(\frac{\left(30+60+96\right)k}{\left(45+80+120\right)k}\)
=> A = \(\frac{186k}{245k}\)
=> A = \(\frac{186}{245}\)
Vậy A = \(\frac{186}{245}\).
Thay \(a+b+c\) vào \(A\) ta được:
\(A=\frac{a}{2017-c}+\frac{b}{2017-a}+\frac{c}{2017-b}\)
\(=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)
\(=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}\)
Ta có:
\(\frac{a}{a+b}< \frac{a+b}{a+b+c}\)
\(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)
\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng vế với vế ta được:
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}\)\(=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow A< 2\left(1\right)\)
Lại có:
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
Cộng vế với vế ta lại được:
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)\(=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow A>1\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow1< A< 2\)
Vậy \(A\) không phải là số nguyên (Đpcm)
cái này chứng minh 1 < A < 2. mình chỉ bít chứng minh 1 < A thui
Ta có \(\frac{a}{2017-c}>\frac{a}{2017};\frac{b}{2017-a}>\frac{b}{2017};\frac{c}{2017-b}>\frac{c}{2017}\)
suy ra \(A>\frac{a}{2017}+\frac{b}{2017}+\frac{c}{2017}=\frac{2017}{2017}=1\)
=> A > 1
A = (1 + 1/4) + (1 + 1/9) + (1 + 1/16) + ... + (1 + 1/2500) (có 49 tổng)
= 49 + 1/(2^2) + 1/(3)^2 + ... + 1/(50)^2
nhỏ hơn: 49 + 1/1.2 + 1/2.3 + ... + 1/49.50 = 49 + 1 - 1/50 = 50 - 1/50 nhỏ hơn 50
mà A lớn hơn 49
=> A không là số nguyên
Học Tốt !