K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

Giả sử điều cần c/m là đúng

Ta có : \(a+b+c\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Leftrightarrow a+b+c\ge3\left(\dfrac{ab+bc+ac}{abc}\right)\)

\(\Leftrightarrow a+b+c\ge\dfrac{3\left(ab+bc+ac\right)}{a+b+c}\) ( do \(a+b+c=abc\) )

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)\ge3\left(ab+ac+bc\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac+2bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) ( điều này luôn đúng )

\(\Rightarrow\) Điều giả sử là đúng

\(\Rightarrow a+b+c\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(đpcm\right)\)

10 tháng 6 2017

Ta có: \(a+b+c=0\)

=> \(a+b=-c;a+c=-b;b+c=-a\)

Do đó:

\(M=a\left(a+b\right)\left(a+c\right)=a\left(-c\right)\left(-b\right)=abc\)

\(N=b\left(b+c\right)\left(b+a\right)=b\left(-a\right)\left(-c\right)=abc\)

\(P=c\left(c+a\right)\left(c+b\right)=c\left(-b\right)\left(-a\right)=abc\)

=> M=N=P ( = abc)

10 tháng 6 2017

Ta có : a + b + c = 0

=> a + b = -c ; a + c = -b ; b + c = -a

Thế vào M, N, P :

=> M = a.(-c).(-b) = -abc

N = b.(-a).(-c) = -abc

P = c.(-b).(-a) = -abc

Vậy M = N = P.

10 tháng 8 2018

Bạn giải được câu này chưa, mình đang bí huhu

28 tháng 7 2020

không biêt đâu

28 tháng 7 2020

Bài làm:

Ta có: \(a+b+c=0\Leftrightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)

Thay vào ta được: \(\hept{\begin{cases}M=a\left(-c\right)\left(-b\right)=abc\\N=b\left(-a\right)\left(-c\right)=abc\\P=c\left(-b\right)\left(-a\right)=abc\end{cases}}\)

\(\Rightarrow M=N=P\)

31 tháng 1 2018

Bạn xem lời giải ở đây nhé

Câu hỏi của Hồng Minh - Toán lớp 9 - Học toán với OnlineMath

22 tháng 2 2017

Chú ý: a+b=-c

b+c=-a

a+c=-b

thay các biểu thức này vào thì ta được M=N=P=abc

23 tháng 2 2017

Từ a+b+c=0 => a+b=-c; a+c=-b; b+c=-a

Mặt khác: M=a(a+b)(a+c)=a(-c)(-b)=abc

N=b(b+c)(b+a)=b(-a)(-c)=abc

P=c(c+a)(c+b)=c(-b)(-a)=abc

=>M=N=P (đpcm)

5 tháng 7 2017

a+b+c=0 <=>a+b = -c , b+c= -a , c+a = -b

Khi đó thay a+b = -c, b+c = -a , c+a = -b vào thì ta được 

M=-abc

N=-abc

P=-abc

=> M=N=P

\(M=a\left(a+b\right)\left(a+c\right)\)

\(=a^3+a^2+a^2b+abc\)

\(=a^2\left(a+b+c\right)+abc=abc\)

\(N=b\left(b+c\right)\left(b+a\right)\)

\(=b^3+b^2c+b^2a+abc\)

\(=b^2\left(a+b+c\right)+abc=abc\)

\(P=c\left(c+a\right)\left(c+b\right)\)

\(=c^3+c^2a+c^2b+abc\)

\(=c^2\left(a+b+c\right)+abc=abc\)

\(\Rightarrow M=N=P\)

11 tháng 5 2017

Bài 2: 

  Đặt   \(a=3+x\)và   \(b=3+y\)thì    \(x,y\ge0\). Ta có :  \(a+b=6+\left(x+y\right)\).

Ta cần chứng minh   \(x+y\ge1\)

Ví dụ   \(x+y< 1\)thì  \(x^2+2xy+y^2< 1\)nên \(x^2+y^2< 1\)

\(\Leftrightarrow a^2+b^2=\left(x+3\right)^2+\left(y+3\right)^2=18+6\left(x+y\right)+\left(x^2+y^2\right)< 18+6+1=25\)

Điều này ngược với  giả thiết ở đề bài   \(ầ^2+b^2\ge25\)

Vậy \(x+y\ge1\)\(\Leftrightarrow a+b\ge7\left(dpcm\right)\)

tk mk nka !!!

18 tháng 3 2019

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{a+b}{-\left(a+b+c\right).c}\)

TH1:a+b=0

=> a=-b

\(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{\left(-b\right)^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{c^n}\)(vì n lẻ nên (-b)n âm)

\(\frac{1}{a^n+b^n+c^n}=\frac{1}{\left(-b\right)^n+b^n+c^n}=\frac{1}{c^n}\)

TH2: ab=-(a+b+c)

=> ab=-ac-bc-c2 => ab+ac=-bc-c2=> a.(b+c)=-b.(b+c)

\(\Rightarrow\orbr{\begin{cases}a=-b\\b=-c\end{cases}}\)c/m tương tự trường hợp 1 :))

18 tháng 3 2019

>: nhầm

dòng 8: a.(b+c)=-c.(b+c) =>...