K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

Ta có: \(\dfrac{1}{3^3}\) < \(\dfrac{1}{2.3.4}\)

\(\dfrac{1}{4^3}\) < \(\dfrac{1}{3.4.5}\)

.......

\(\dfrac{1}{n^3}\) < \(\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)

\(\Rightarrow\) \(\dfrac{1}{3^3}\) + \(\dfrac{1}{4^3}\) + ...+ \(\dfrac{1}{n^3}\) < \(\dfrac{1}{2.3.4}\)

+ \(\dfrac{1}{3.4.5}\) + ... + \(\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\) Có:\(\dfrac{1}{2.3.4}\)+ \(\dfrac{1}{3.4.5}\)​+...+\(\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\) = \(\dfrac{1}{2}\)(\(\dfrac{1}{2.3}\) - \(\dfrac{1}{3.4}\)+ \(\dfrac{1}{3.4}\)- \(\dfrac{1}{4.5}\)+ ... +\(\dfrac{1}{n\left(n-1\right)}\)- \(\dfrac{1}{n}\) + \(\dfrac{1}{n}\) - \(\dfrac{1}{n\left(n+1\right)}\)) = \(\dfrac{1}{2}\)(\(\dfrac{1}{2.3}\) - \(\dfrac{1}{n\left(n+1\right)}\)) = \(\dfrac{1}{12}\)- \(\dfrac{1}{2n\left(n+1\right)}\) < \(\dfrac{1}{12}\) Vậy B = \(\dfrac{1}{3^3}\) + \(\dfrac{1}{4^3}\)+ \(\dfrac{1}{5^3}\)+ ... + \(\dfrac{1}{n^3}\) < \(\dfrac{1}{12}\) Chúc bn học tốt haha
3 tháng 12 2017

Ta có: \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\)

\(\Rightarrow A< \dfrac{1}{2^2-1}+\dfrac{1}{3^2-1}+...+\dfrac{1}{n^2-1}\)

\(\Rightarrow2A< \dfrac{2}{1.3}+\dfrac{2}{2.4}+\dfrac{2}{3.5}+...+\dfrac{2}{\left(n-1\right)\left(n+1\right)}\)

\(\Rightarrow2A< 1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{2}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n+1}\)

\(\Rightarrow2A< 1\)

\(\Rightarrow A< \dfrac{1}{2}< \dfrac{2}{3}\)

20 tháng 7 2017

Nhận xét :

\(\dfrac{1}{k^3}< \dfrac{1}{2}\left(\dfrac{1}{\left(k-1\right)k}-\dfrac{1}{k\left(k+1\right)}\right)\)

Áp dụng nhận xét trên ta có:

\(=>B< \dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}....+\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\right)\)

\(=>B< \dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{n\left(n+1\right)}\right)< \dfrac{1}{12}\)

\(=>B< \dfrac{1}{12}\)

CHÚC BẠN HỌC TỐT..................

\(\)

22 tháng 11 2018

a) Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{\left(2n\right)^2}\)

\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)\)

Ta có:

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\)

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{n}\)

\(\Rightarrow1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{n}+1\)

\(\Rightarrow1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 2-\dfrac{1}{n}\)

\(\Rightarrow\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)< \dfrac{1}{2^2}\left(2-\dfrac{1}{2}\right)\)

\(\Rightarrow A< \dfrac{1}{2^2}.2-\dfrac{1}{2^2}.\dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{2}-\dfrac{1}{2^3}< \dfrac{1}{2}\)

Vậy \(A< \dfrac{1}{2}\left(Đpcm\right)\)

b) Đặt \(B=\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+...+\dfrac{1}{\left(2n+1\right)^2}\)

Ta có:

\(B< \dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(B< \dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)

\(B< \dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)

\(B< \dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)\)

\(B< \dfrac{1}{2}\left(\dfrac{2n+1}{2n+1}-\dfrac{1}{2n+1}\right)\)

\(B< \dfrac{1}{2}.\dfrac{2n}{2n+1}\)

\(B< \dfrac{2n}{4n+2}\)

\(B< \dfrac{2n}{2\left(2n+1\right)}\)

\(B< \dfrac{n}{2n+1}\)

26 tháng 11 2017

Em chưa học làm dạng này , em làm thử thôi nhá, sai xin chỉ dạy thêm nha

2 . \(\dfrac{n^7+n^2+1}{n^8+n+1}=\dfrac{n^7-n+n^2+n+1}{n^8-n^2+n^2+n+1}\)

\(=\dfrac{n\left(n^6-1\right)+n^2+n+1}{n^2\left(n^6-1\right)+n^2+n+1}=\dfrac{n\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}\)\(=\dfrac{n\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}\)

\(=\dfrac{\left(n^2+n+1\right)\left[\left(n^4+n\right)\left(n-1\right)\right]}{\left(n^2+n+1\right)\left[\left(n^5+n^2\right)\left(n-1\right)+1\right]}\)

\(=\dfrac{n^5-n^4+n^2-n}{n^6-n^5+n^3-n^2+1}=\dfrac{n^4\left(n-1\right)+n\left(n-1\right)}{n^5\left(n-1\right)+n^2\left(n-1\right)+1}\)

\(=\dfrac{\left(n-1\right)\left(n^4+n\right)}{\left(n-1\right)\left(n^5+n^2\right)+1}\)

Vậy ,với mọi số nguyên dương n thì phân thức trên sẽ không tối giản

26 tháng 3 2017

Ta có: \(1-\dfrac{1}{n^2}=\dfrac{\left(n-1\right)\left(n+1\right)}{n^2}\)

Thế vô bài toán ta được

\(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{n^2}\right)=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}...\dfrac{\left(n-1\right)\left(n+1\right)}{n.n}=\dfrac{1}{2}.\dfrac{n+1}{n}\)

Ta thấy

\(\dfrac{1}{2}.\dfrac{n}{n}< \dfrac{1}{2}.\dfrac{n+1}{n}< \dfrac{1}{2}.\dfrac{n+n}{n}\)

\(\Rightarrow\dfrac{1}{2}< \dfrac{1}{2}.\dfrac{n+1}{n}< 1\)

\(\Rightarrow\)ĐPCM

13 tháng 6 2019

2. 

Từ giả thiết, ta có : 

\(\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}+1-\frac{1}{1+d}\)

\(=\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\ge3\sqrt[3]{\frac{b.c.d}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}\)

Tương tự, ta cũng có : 

\(\frac{1}{1+b}\ge3\sqrt[3]{\frac{c.d.a}{\left(1+c\right)\left(1+d\right)\left(1+a\right)}}\)

\(\frac{1}{1+c}\ge3\sqrt[3]{\frac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)

\(\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

Nhân vế theo vế 4 BĐT vừa chững minh rồi rút gọn ta được :

\(abcd\le\frac{1}{81}\left(đpcm\right)\)

13 tháng 6 2019

2) Từ \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+d}\ge3.\)

\(\Rightarrow\frac{1}{1+a}\ge\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)+\left(1-\frac{1}{1+d}\right)\)

                  \(=\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\ge3\sqrt[3]{\frac{bcd}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}.\)(BĐT AM-GM)

Tương tự :

\(\frac{1}{1+b}\ge3\sqrt[3]{\frac{acd}{\left(1+a\right)\left(1+c\right)\left(1+d\right)}}\)

\(\frac{1}{1+c}\ge3\sqrt[3]{\frac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)

\(\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}.\)

Từ đó suy ra:

\(\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}.\frac{1}{1+d}\ge3.3.3.3\sqrt[3]{\frac{\left(abcd\right)^3}{\left[\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)\right]^3}}\)

\(\Leftrightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\ge\frac{81abcd}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}.\)

\(\Leftrightarrow81abcd\le1\Leftrightarrow abcd\le\frac{1}{81}\)

Dấu '=' xảy ra khi \(a=b=c=d=\frac{1}{3}.\)

3)Ta có: \(\left(\sqrt{a}+\sqrt{b}\right)^8=\left[\left(\sqrt{a}+\sqrt{b}\right)^2\right]^4=\left(a+b+2\sqrt{ab}\right)^4.\)(1)

Với \(a,b\ge0\),áp dụng BĐT AM-GM cho (a+b) và (\(2\sqrt{ab}\)) ta được 

\(\left(a+b\right)+2\sqrt{ab}\ge2\sqrt{\left(a+b\right)2\sqrt{ab}}\)(2)

Từ (1) và (2) suy ra:

\(\left(\sqrt{a}+\sqrt{b}\right)^8\ge\left(2\sqrt{\left(a+b\right)2\sqrt{ab}}\right)^4\)

\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^8\ge64ab\left(a+b\right)^2.\)

Dấu '=' xảy ra khi \(a+b=2\sqrt{ab}\Leftrightarrow a=b\)

1) Với \(x\le\frac{2}{3}\Rightarrow2-3x\ge0\)

Khi đó ,áp dụng bất đẳng thức AM-GM cho 2 số ta được:

\(\left(2-3x\right)+\frac{9}{2-3x}\ge2\sqrt{\left(2-3x\right)\frac{9}{2-3x}}=2.3=6\)

\(\Leftrightarrow2+\left(2-3x\right)+\frac{9}{2-3x}\ge2+6\)

\(\Leftrightarrow4-3x+\frac{9}{2-3x}\ge8\)

Dấu '=' xảy ra khi \(2-3x=\frac{9}{2-3x}\Leftrightarrow\left(2-3x\right)^2=9\Leftrightarrow2-3x=3\Leftrightarrow x=-\frac{1}{3}\)( vì 2-3x>0)

9 tháng 2 2018

\(a^2+\left(a+1\right)^2=a^2+a^2+2a+1\\ =2a^2+2a+1>2a\left(a+1\right)\\ \Rightarrow\dfrac{1}{a^2+\left(a+1\right)^2}< \dfrac{1}{2a\left(a+1\right)}\)

\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}+...+\dfrac{1}{n^2+\left(n+1\right)^{^2}}\\ =\dfrac{1}{1^2+2^2}+\dfrac{1}{2^2+3^2}+\dfrac{1}{3^2+4^2}+...+\dfrac{1}{n^2+\left(n+1\right)^2}\\ < \dfrac{1}{2.1.\left(1+2\right)}+\dfrac{1}{2.2\left(2+1\right)}+....+\dfrac{1}{2n\left(n+1\right)}\\ =\dfrac{1}{2}\left(\dfrac{1}{3}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n+1\right)}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{n+1}\right)\\ =\dfrac{1}{2}\left(\dfrac{5}{6}-\dfrac{1}{n+1}\right)\\ =\dfrac{5}{12}-\dfrac{1}{2n+2}< \dfrac{5}{12}< \dfrac{9}{20}\)

25 tháng 8 2018

a) Gọi ƯCLN(3n+1;5n+2) là d

ta có: 3n+1 chia hết cho d => 15n + 5 chia hết cho d

5n + 2 chia hết cho d => 15n + 6 chia hết cho d

=> 15n + 6 - 15n - 5 chia hết cho d

=> 1 chia hết cho d

=> 3n+1/5n+2 là phân số tối giản

25 tháng 8 2018

gọi d là ƯC(3n + 1; 5n + 2)  (d thuộc Z)

\(\Rightarrow\hept{\begin{cases}3x+1⋮d\\5n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+1\right)⋮d\\3\left(5n+2\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+5⋮d\\15n+6⋮d\end{cases}}}}\)

=> (15n + 5) - (15n + 6) ⋮ d

=> 15n + 5 - 15n - 6 ⋮ d

=> (15n - 15n) - (6 - 5) ⋮ d

=> 0 - 1 ⋮ d

=> 1 ⋮ d

=> d = 1 hoặc d = -1

vậy \(\frac{3n+1}{5n+2}\) là phân số tối giản với mọi n thuộc N

6 tháng 3 2018

ta có \(\dfrac{1}{3^3}< \dfrac{1}{3^3-3}\)

\(\dfrac{1}{4^3}< \dfrac{1}{4^3-4}\)

...............

\(\dfrac{1}{n^3}< \dfrac{1}{n^3-n}\)

=> \(\dfrac{1}{3^3}+\dfrac{1}{4^3}+\dfrac{1}{5^3}+....+\dfrac{1}{n^3}< \dfrac{1}{3^3-3}+\dfrac{1}{4^3-4}+....+\dfrac{1}{n^3-n}\)=>\(B< \dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+....+\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)đặt \(C=\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+....+\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)

C=\(\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+.....+\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\)C=\(\dfrac{1}{6}-\dfrac{1}{n\left(n+1\right)}\)

=> C<\(\dfrac{1}{6}\)

\(\dfrac{1}{6}< \dfrac{1}{4}\)

=> C<\(\dfrac{1}{4}\)

ta lại có B<C

=> B<\(\dfrac{1}{4}\) (đpcm)

6 tháng 3 2018

mk bị nhầm rồi xin lỗi nha