\(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+2\ri...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chứng minh đề bài sai

Ta có 

\(2^8+2=2\left(2^7+1\right)\)

=>\(A⋮2\)

3 tháng 7 2019

A không chia hết cho 2 vì toàn bộ thừa số của A đều lẻ.

 t nghĩ đề là \(2^8+1\)

12 tháng 10 2017

Ta có\(\left(x+1\right)^{2n}⋮\left(n+1\right)\)(1)

\(\left(x+2\right)^n-1=\left(x+1\right)\left[\left(x+2\right)^{n-1}+\left(n+2\right)^{n-2}+...+1\right]\)

\(\Rightarrow\left(x+2\right)^n-1⋮\left(x+1\right)\)(2)

Từ (1) và (2)\(\Rightarrow\left[\left(x+1\right)^{2n}+\left(x+2\right)^n-1\right]⋮\left(x+1\right)\)       (*)

Lại có\(\left(x+1\right)^{2n}-1\)

\(=\left[\left(x+1\right)^n+1\right]\left[\left(x+1\right)^n-1\right]\)

\(=\left[\left(x+1\right)^n-1\right]\left(x+2\right)\left[\left(x+1\right)^{n-1}-\left(x+1\right)^{n-2}+........+1\right]\)

\(\Rightarrow\left(x+1\right)^{2n}-1⋮\left(x+2\right)\)

Mà \(\left(x+2\right)^n⋮\left(x+2\right)\)

\(\Rightarrow\left[\left(x+1\right)^{2n}+\left(x+2\right)^n-1\right]⋮\left(x+2\right)\)(**)

Ta lại có (x+1) và (x+2) nguyên tố cùng nhau (***)

Từ (*);(**) và(***) \(\Rightarrow\left[\left(x+1\right)^{2n}+\left(x+2\right)^n-1\right]⋮\left(x^2+3x+2\right)\)

1 tháng 11 2016

mày điên à, làm gì có câu hỏi kiểu này?

1 tháng 11 2016

mày bị điên rồi hả câu hỏi thế này làm gì có người giải được

27 tháng 6 2017

a) n2(n + 1) + 2n(n + 1) 

= (n2 + 2n)(n + 1)

= n(n + 2)(n + 1)  chia hết cho 6 vì là 3 số tự nhiên liên tiếp 

b) (2n - 1)3 - (2n - 1) 

= (2n - 1).[(2n - 1)2 - 1]

= (2n - 1).{ [ (2n - 1) + 1] . [ (2n - 1) -1 ] }

= *2n - 1) . 2n . (2n - 2)      chia hết cho 8 vì là 3 số chẵn liên tiếp

c) (n + 2)2 - (n - 2)2

= n2 + 4n - 4 - (n2 - 4n + 4)

= n2 + 4n - 4 - n2 + 4n - 4

= 8n - 8         chia hết cho 8

5 tháng 7 2016

xem lại câu a nhé bạn

15 tháng 6 2016

\(n^3+n^2+2n^2+2n\)

\(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(n\left(n+1\right)\left(n+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3. Mà 2 và 3 nguyên tố cùng nhau nên tích chia hết cho 6.

15 tháng 6 2016

c) \(n^2+14n+49-n^2+10n-25\)

\(=24n+24=24\left(N+1\right)\) CHIA HẾT CHO 24

27 tháng 6 2017

a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

\(\Rightarrowđpcm\)

b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+31n+5-6n^2-7n+5\)

\(=24n+10=2\left(12n+5\right)⋮2\)

\(\Rightarrowđpcm\)

27 tháng 6 2017

a) (n2+ 3n 1) (n + 2) n3+ 2

= n3 + 2n2 + 3n2 + 6n - n - 2 + 2

= 5n2 + 5n

= 5(n2 + n ) chia hết cho 5

b) (6n + 1) (n + 5) (3n + 5) (2n 1)

= 6n2 + 30n + n + 5 - 6n2 + 3n - 10n +5

= 24n + 10

= 2(12n +5) chia hết cho 2

27 tháng 10 2017

Bài 2:Tìm x biết

(4x+3)3+(5−7x)3+(3x−8)3=0\" id=\"MathJax-Element-4-Frame\">\\(\\left(4x+3\\right)^3+\\left(5-7x\\right)^3+\\left(3x-8\\right)^3=0\\)

\\(\\Leftrightarrow\\left[\\left(4x\\right)^3+3.\\left(4x\\right)^2.3+3.4x.3^2+3^3\\right]+\\left[5^3-3.5^2.7x+3.5.\\left(7x\\right)^2-\\left(7x\\right)^3\\right]+\\left[\\left(3x\\right)^3-3.\\left(3x\\right)^2.8+3.3x.8^2-8^3\\right]=0\\)

\\(\\Leftrightarrow64x^3+144x^2+108x+27+125-525x+735x^2-343x^3+27x^3-216x^2+576x-512=0\\)

\\(\\Leftrightarrow-252x^3+663x^2+159x-360=0\\)

\\(\\Leftrightarrow3\\left(-84x^3+221x^2+53x-120\\right)=0\\)

 

26 tháng 7 2019

M bị phê đá à con

8 tháng 10 2019

a,(2n+4).2=4(n+2) chia hwtc ho 8

8 tháng 10 2019

a) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=\left(2n+2\right)4\)

\(=2\left(n+1\right).4\)

\(=8\left(n+1\right)⋮8\) 

=> đpcm