\(\dfrac{1}{1+3}+\dfrac{1}{1+3+5}+\dfrac{1}{1+3+5+7}+...+\dfrac{1}{1+3+5+...+2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2017

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{1009^2}\)

Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{4};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{1009^2}< \dfrac{1}{1008.1009}\)

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{1009^2}< \dfrac{1}{4}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{1008.1009}\)\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{1008}-\dfrac{1}{1009}\)

\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{1009}\)

\(\Rightarrow A< \dfrac{3}{4}-\dfrac{1}{1009}\)

\(\Rightarrow A< \dfrac{3}{4}\left(đpcm\right)\)

27 tháng 5 2017

Có \(A=\dfrac{1}{1+3}+\dfrac{1}{1+3+5}+...+\dfrac{1}{1+3+5+...+2017}\)

\(\Rightarrow A=\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{1+3+...+2017}\)

\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2017^2}\)

Ta thấy:

\(\dfrac{1}{2^2}=\dfrac{1}{4}\)

\(\dfrac{1}{3^2}< \dfrac{1}{3.2}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)

.................

\(\dfrac{1}{2017^2}< \dfrac{1}{2016.2017}\)

\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2016.2017}\)

\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2016}-\dfrac{1}{2017}\)

\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{2017}\)

\(\Rightarrow A< \dfrac{3}{4}-\dfrac{1}{2017}\)

\(\Rightarrow A< \dfrac{3}{4}\)

Vậy \(A< \dfrac{3}{4}\).

27 tháng 5 2017

\(\dfrac{1}{1+3}\) + \(\dfrac{1}{1+3+5}\) +...+ \(\dfrac{1}{1+3+...+2017}\)

= \(\dfrac{1}{2^2 }\)+\(\dfrac{1}{3^2}\) + ... +\(\dfrac{1}{2017^2}\)

Lại có :

\(\dfrac{1}{2^2}\) = \(\dfrac{1}{4} \)

\(\dfrac{1}{3^2}\) <\(\dfrac{1}{2.3}\)

...

\(\dfrac{1}{2017^2}\) <\(\dfrac{1}{2016.2017}\)

\(\Rightarrow \) A< \(\dfrac{1}{4} \) +\(\dfrac{1}{2.3}\)+... +\(\dfrac{1}{2016.2017}\)

A<\(\dfrac{1}{4} \)+\(\dfrac{1}{2}\)- \(\dfrac{1}{3}\) +...+\(\dfrac{1}{2016}- \dfrac{1}{2017}\)

A< \(\dfrac{1}{4} \)+\(\dfrac{1}{2}\) -\(\dfrac{1}{2017}\)

A<\(\dfrac{3}{4}\) -\(\dfrac{1}{2017}\)

\(\Rightarrow\)A<\(\dfrac{3}{4}\) (đpcm)

chúc bạn học tốt !!!ok

12 tháng 4 2017

Bài 1:

Ta có:

\(\left(100a+3b+1\right)\left(2^a+10a+b\right)=225\left(1\right)\)

\(225\) lẻ nên \(\left\{{}\begin{matrix}100a+3b+1\\2^a+10a+b\end{matrix}\right.\) cùng lẻ \(\left(2\right)\)

\(*)\) Với \(a=0\) ta có:

Từ \(\left(1\right)\Leftrightarrow\left(100.0+3b+1\right)\left(2^a+10.0+b\right)=225\)

\(\Leftrightarrow\left(3b+1\right)\left(1+b\right)=225=3^2.5^2\)

Do \(3b+1\div3\)\(1\)\(3b+1>1+b\)

Nên \(\left(3b+1\right)\left(1+b\right)=25.9\) \(\Rightarrow\left\{{}\begin{matrix}3b+1=25\\1+b=9\end{matrix}\right.\) \(\Leftrightarrow b=8\)

\(*)\) Với \(a\ne0\left(a\in N\right)\) ta có:

Khi đó \(100a\) chẵn, từ \(\left(2\right)\Rightarrow3b+1\) lẻ \(\Rightarrow b\) chẵn

\(\Rightarrow2^a+10a+b\) chẵn, trái với \(\left(2\right)\) nên \(b\in\varnothing\)

Vậy \(\left\{{}\begin{matrix}a=0\\b=8\end{matrix}\right.\)

Bài 2:

Ta có:

\(A=\dfrac{1}{1+3}+\dfrac{1}{1+3+5}+...+\dfrac{1}{1+3+...+2017}\)

\(=\dfrac{1}{\dfrac{\left(1+3\right).2}{2}}+\dfrac{1}{\dfrac{\left(1+5\right).3}{2}}+...+\dfrac{1}{\dfrac{\left(1+2017\right).1009}{2}}\)

\(=\dfrac{2}{2.4}+\dfrac{2}{3.6}+\dfrac{2}{4.8}+...+\dfrac{2}{1009.2018}\)

\(=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{1009.1009}\)

\(\Rightarrow A< \dfrac{1}{2.2}+\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{1008.1009}\right)\)

\(\Rightarrow A< \dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{1008}-\dfrac{1}{1009}\right)\)

\(\Rightarrow A< \dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{1009}\right)\)

\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}=\dfrac{3}{4}\) (Đpcm)

25 tháng 4 2017

Tuyệt cú mèokhocroikhocroikhocroi

1 tháng 5 2017

Kiyoko Vũ

a, xét từng đoạn 1 , 1/2 ,1/2^3 ,1/2^4 ,1/2^5 ,1/2^6
ta có
1 = 1
1/2 + 1/3 < 1/2 + 1/2 = 1
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1
tương tự
1/16 +1/17 + .. + 1/31 < 1
1/32 + 1/33 + .. + 1/63 < 1
=> cộng lại => A < 6

b, Câu hỏi của trịnh quỳnh trang - Toán lớp 6 - Học toán với OnlineMath

7 tháng 3 2017

Ta có: \(A=\dfrac{1}{5^2}+\dfrac{2}{5^3}+...+\dfrac{11}{5^{12}}\)

\(\Rightarrow5A=\dfrac{1}{5}+\dfrac{2}{5^2}+...+\dfrac{11}{5^{11}}\)

\(\Rightarrow5A-A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\)

\(\Rightarrow4A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\)

\(\Rightarrow20A=1+\dfrac{1}{5}+...+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\)

\(\Rightarrow20A-4A=\left(1+\dfrac{1}{5}+...+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\right)\)

\(\Rightarrow16A=1-\dfrac{12}{5^{11}}+\dfrac{11}{5^{12}}< 1\)

\(\Rightarrow A< \dfrac{1}{16}\)

22 tháng 1 2018
Ta có: A=152+253+...+11512A=152+253+...+11512

⇒5A=15+252+...+11511⇒5A=15+252+...+11511

⇒5A−A=15+152+...+1511−11512⇒5A−A=15+152+...+1511−11512

⇒4A=15+152+...+1511−11512⇒4A=15+152+...+1511−11512

⇒20A=1+15+...+1510−11511⇒20A=1+15+...+1510−11511

⇒20A−4A=(1+15+...+1510−11511)−(15+152+...+1511−11512)⇒20A−4A=(1+15+...+1510−11511)−(15+152+...+1511−11512)

⇒16A=1−12511+11512<1⇒16A=1−12511+11512<1

⇒A<116⇒A<116

leuleu
15 tháng 5 2018

a) Giải

Đặt \(M=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\)

\(\Rightarrow A< A.M\)

hay \(A< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\right)\)

\(\Rightarrow A< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.\dfrac{5}{6}.\dfrac{6}{7}...\dfrac{98}{99}.\dfrac{99}{100}\)

\(\Leftrightarrow A< \dfrac{1.2.3.4.5.6...98.99}{2.3.4.5.6.7...99.100}\)

\(\Rightarrow A< \dfrac{1}{100}< \dfrac{1}{10}\)

Vậy \(A< \dfrac{1}{10}\)

8 tháng 5 2017

Câu a :

Chưa nghĩ ra! Sorry nhé!!

Câu b :

Câu hỏi của Trần Thùy Linh - Toán lớp 6 | Học trực tuyến

Câu c :

Câu hỏi của Trần Thùy Linh - Toán lớp 6 | Học trực tuyến

Vào link đó mà xem, t ngại chép lại

15 tháng 2 2024

S = \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{5}\) + ... + \(\dfrac{1}{8}\) + \(\dfrac{1}{9}\)

Vì \(\dfrac{1}{3}>\dfrac{1}{4}>\dfrac{1}{5}>..>\dfrac{1}{9}\) ta có:

\(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) > \(\dfrac{2}{4}\) = \(\dfrac{1}{2}\)

\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}>\dfrac{1}{9}.5\) = \(\dfrac{5}{9}>\dfrac{5}{10}=\dfrac{1}{2}\)

Cộng vế với vế ta có: 

S > \(\dfrac{1}{2}+\dfrac{1}{2}=1\) (1)

\(\dfrac{1}{3}+\dfrac{1}{4}< \dfrac{2}{3}\)

\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}< \dfrac{1}{5}.5=1\)

Cộng vế với vế ta có:

\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}\) < \(\dfrac{2}{3}\) + 1 < 2 (2)

Kết hợp (1) và (2) ta có: 

1 < S < 2 (đpcm)

 

\(A=\dfrac{\left(3+\dfrac{2}{15}+\dfrac{1}{5}\right):\dfrac{5}{2}}{\left(5+\dfrac{3}{7}-2-\dfrac{1}{4}\right):\left(4+\dfrac{43}{56}\right)}\)

\(=\dfrac{\dfrac{10}{3}\cdot\dfrac{2}{5}}{\dfrac{89}{28}:\dfrac{267}{56}}=\dfrac{4}{3}:\dfrac{2}{3}=2\)

\(B=\dfrac{\dfrac{6}{5}:\left(\dfrac{6}{5}\cdot\dfrac{5}{4}\right)}{\dfrac{8}{25}+\dfrac{2}{25}}=\dfrac{\dfrac{6}{5}:\dfrac{3}{2}}{\dfrac{2}{5}}=2\)

Do đó: A=B